domenica 24 maggio 2015

Atene, Parigi e la sovranità... delle nazioni.

Quanto è importante capire per essere pienamente consapevoli della situazione politica economica e sociale che vivono oggi le nostre società nazionali, dentro la gabbia UE? Un'analisi attenta e trasparente, di J. Sapir, ci chiarisce le idee sui potentati che l'hanno voluta, e di chi si nasconde dietro a questo progetto UE, e di come si sia evoluto, inoltre perfino come hanno usurpato la sovranità dei popoli, delle nazioni, delle società statuali sovrane europee.                               Sa Defenza


Atene, Parigi e la sovranità...delle nazioni.


Jacques Sapir
trd Sa Defenza



La sovranità è ora una questione centrale. E' la questione decisiva del momento storico che stiamo vivendo. 

Essa determina le scelte politiche, ma anche la comprensione della crisi che stiamo vivendo. Occupa il posto centrale per due motivi convergenti. 

Da un lato, la sovranità è necessaria per l'azione politica in questo passaggio dal "io" al "noi" di azione collettiva, e la seconda è una necessità assoluta della crisi, sia economica che sociale, politica e culturale che attraversiamo. 

Nella sovranità è fondamentale la distinzione tra legittimo e legale. Questa distinzione è costantemente sfidata dalla logica di istituzioni che governano il nostro sistema politico.
Viviamo in regimi e sistemi politici in cui il "come" ha preso il posto del "perché". Ciò corrisponde ad un cambio di gestione, il "tecnico" prevale sulla "politica". Alcune delle crisi che sono state menzionate ne sono la conseguenza. Se vogliamo porre la domanda "perché", e quindi capire che esiste una molteplicità di "come" è possibile, mentre la sovranità è essenziale. Ma se la legittimità e legalità possono essere comprese solo in termini di sovranità, dobbiamo ammettere che la laicità, nel senso di restituire le convinzioni non verificabili alla sfera privata,  è necessario per la costruzione del bene comune, la " Res Publica " dalla cui parola deriva Repubblica.
Copyright: Anne-Marie de Grazia

1. Entrambi a gennaio.

Se vediamo questi, due eventi del gennaio 2015, confermano uno direttamente e indirettamente l'altro. Il primo di questi eventi è costituito dagli omicidi del 7 e 9 gennaio 2015 a Parigi. Questi assassinii, e noi di fronte a questa verità crudele: la Repubblica può chiarire e rigettare quanto successo.

Charlie, la Repubblica sta morendo.

Questi atroci crimini, con il dibattito provocato dallo slogan "Je suis Charlie" [1] , pone in essere la nascita di un senso di comunità. Ma questa sentimento è l'opposto della Repubblica. Si mette in discussione la legittimità delle nostre istituzioni e del governo.

Crudele ironia, la tragedia è avvenuta quasi dieci anni dopo il referendum del 2005 di cui ne rammentiamo l'aspetto: il popolo francese aveva respinto a larga maggioranza il progetto del trattato costituzionale europeo  proposto. Eppure la classe politica unita su questo punto ben al di là delle differenze politiche, l'ex destra gollista e il partito socialista,  si sono affrettati a inventare un nuovo trattato, molto simile a quello rigettato. 
Il Trattato di Lisbona è stato poi adottato dall'arcaico "Congresso", della Terza e della Quarta Repubblica, legittimandolo - giustamente - seppure molto inferiore a quello di un referendum. Questo scandalo, è enorme, e segna l'inizio della disintegrazione dello stato, che non può mascherare i deliri di alcuni, la finezza del buonumore di altri, o l'ictus di terzi. Esso era, e rimane, un importante attacco alla sovranità della nazione, ovvero alla sovranità del popolo.

Ma c'è di più e di peggio. Il gennaio 2015 i crimini hanno anche messo in dubbio uno dei principi fondanti della Repubblica e della democrazia. Nel tentativo di imporre una "blasfemia" uccidendo persone a causa della loro religione (o mancanza), è la nostra idea della Repubblica, questa "cosa comune" e Res Publica , che uccide. In realtà non c'è un legame tra tutto questo [2] . Quando si viola la sovranità del popolo, si mina la legittimità delle istituzioni, lo Stato di diritto è indebolito, cioè il valore della legge.

La messa in discussione, diretta o indiretta, della sovranità del popolo apre  la porta larga per il suo scioglimento e la sua rinascita sotto forma di comunità, che siano religiose o etniche. Non ci possono essere persone, che si basano sulla costruzione politica della sovranità popolare, dal secolarismo e questo principio fondamentale, inclusa nella nostra Costituzione della Repubblica ove non si riconosca nessuna religione e nessuna razza . Così ci troviamo di fronte la sfida finale: Repubblica o la guerra di tutti contro tutti.

Primavera in inverno.

Ma un altro evento si è verificato sempre in questo gennaio 2015, l'elezione di un nuovo governo in Grecia. Questo evento conferma la centralità della sovranità. Il partito della vera sinistra, SYRIZA è uscito vincitore di queste elezioni. Ma non era la maggioranza assoluta. 
Dobbiamo quindi pesare il significato storico della scelta fatta dai leader di SYRIZA di unire le loro forze con un partito di destra i "Greci Indipendenti" e non con l'estrema destra come sognava lo sgradevole Colombani [3]
Potrebbero allearsi con un partito di centro, esplicitamente pro-europeo (To Potami o Il Fiume), e poi, generosamente finanziata dai gerarchi di Bruxelles, con detriti del Pasok socialista di sinistra. Hanno fatto una scelta che sembra strana a coloro che non capiscono la questione della sovranità
Questa scelta è oggi una dimostrazione della centralità della questione: sovranità
Infatti, ciò che ha motivato questa alleanza, è la volontà chiaramente espressa del popolo greco, di voler recuperare la sua sovranità e, di conseguenza, la democrazia
Questo compito determina alleanze. Certo, SYRIZA, tradita e abbandonata da gran parte del governo europeo e francese di "sinistra", trovandosi sola non può riuscire a cambiare la situazione, può solo cedere sotto i ripetuti colpi degli eurocrati, della BCE e dell'Eurogruppo.
L'esempio che ci è stato dato rimarrà indelebilmente scolpito nel nostro comune sentire della memoria storica dei popoli. 

Oggi recuperare la sovranità è la premessa fondamentale di qualsiasi lotta politica
Un movimento simile, a Syriza, anima PODEMOS in Spagna, il partito del movimento degli "indignados". Questo partito nega la divisione tra "sinistra" e "destra", e sostituisce la questione del potere, con la divisione del stare con il popolo o con i potenti. Si tratta, ancora una volta, di capire la questione della centralità della sovranità che spiega e giustifica questa posizione [4] .
, la sovranità è la questione fondamentale del periodo politico aperto dalla crisi dell'Unione europea


Ecco perché questa idea è lo scopo di questo libro. La sovranità è come un rocchetto di filo, che finito di srotolarsi non ce ne più. Se si inizia a rilassarsi, le questioni di legittimità, legalità e laicità sono immediatamente messe in discussione.


Scuse e pretesti.

Tornando al primo evento, purtroppo tragico di gennaio 2015. Abbiamo subito detto che gli autori dei crimini nel mese di gennaio sono  solo figli della disperazione. In entrambi i casi; non tutti i bambini sofferenti, o tutti i bambini perduti, prendono le armi per uccidere i loro simili. 
Poi ho aggiunto, "non fare l'amalgama, e cadere nella trappola della 'islamofobia' " e in nome di questo preparare il terreno per la disattivazione del dibattito sull'Islam e le altre religioni. Questo è un grave errore, le conseguenze potrebbero essere terribili. Ha firmato la capitolazione intellettuale contro i nostri principi fondanti. Non che l'Islam è migliore o peggiore di un'altra religione. Ma ogni religione è il mondo delle idee, delle prestazioni. Questo è il primo senso, un'ideologia. In quanto tale, qualsiasi religione può essere criticata, nel senso di essere sottoposto a critica e all'interpretazione.

Questo è contro scandaloso, ciò che è criminale e ciò che deve essere represso con precisione dalla legge è quello di ridurre un essere umano alla sua religione. E' quello di impiegare comunque i fanatici di tutte le bande.

Qui dobbiamo capire i problemi. La Res Publica questo principio di un bene comune che è alla base della Repubblica, e che nasce dalla sovranità implica la distinzione tra spazio privato e spazio pubblico. Questo spazio pubblico è costituito da un processo di esclusione come un processo di inclusione. Il processo di esclusione è costituito dall'esistenza di confini . Nessuno avrebbe tollerato che in uno spazio pubblico si possono ammettere nuovi membri solo per invertire una decisione. E' ben inteso che l'ammissione di un tale principio firma la morte della democrazia. Ma la controparte di questo è che non vi siano nuove esclusioni tra i membri della comunità politica. Ne consegue che i cittadini non dovrebbero essere distinti dalla adesione religiosa o dalla "razza", ma per la loro appartenenza ad un organo politico, la Nazione. Così il principio di laicità deriva dalla sovranità. Laicità non è un qualcosa in più per la Repubblica: è il cemento [5] . È significativo che uno dei grandi pensatori della sovranità, Bodin, ha scritto nel XVI secolo nell'orrore delle guerre di religione, sia scritto un trattato sulla sovranità [6] e un trattato sulla laicità [7] .
Capire per bene [per non sbagliare]. Noi obblighiamo a definire noi stessi con le credenze religiose, i segni di appartenenza, è proprio questa la trappola cui tendiamo e a cui i terroristi vogliono riportarci, ai tempi delle comunità religiose dove si combatte uccidendosi l'un l'altro. Altri poi aggiungeranno le comunità etniche. Se cediamo su questo punto siamo impegnati su un sentiero che conduce alle peggiori barbarie. La confusione in cui per completare gran parte della classe politica francese è qui con le tragiche e gravi conseguenze. Gli attacchi contro i musulmani (come quelli contro gli ebrei, cristiani, buddisti, ecc ...) sono indicibili e intollerabili. Ma abbiamo il diritto di criticare, ridere, deridere, e persino odiare tutte le religioni. E se uno è scioccato dalle caricature, non comprare il giornale in cui sono stati pubblicati, e questo è tutto.

2. Le fondamenta di una crisi.

Questi abusi settari, sicuramente una piccola minoranza ma comunque esistono in una parte di giovani francesi, rivelano il senso di anomia di questo giovane. I giovani provenienti da immigrato non possono integrare perché non sanno di cosa integrare.

Il fanatismo e anomia.
Per quanto riguarda la religione e il fanatismo di alcuni giovani mostrano un aumento di identità e rivendicazioni narcisistiche. Il "noi", che è stato proposto dalla Repubblica,  perde progressivamente credibilità con la Repubblica non più sovrana, prima che la sostituisca l'"io". Ma prima che il vuoto di questo 'io', sia prima della impotenza, che cerca di ricostruire il "noi", un "noi" particolare da altri esclusi.  L'affermazione di identità narcisistica ha costruito il tetto del fondamentalismo.

Perché questa battuta d'arresto nella religione? Perché, esprime il volto delle vittime di reati, nel gennaio 2015, è come dire "non hanno rubato", e chiede il ripristino del reato spregevole di blasfemia? Il motivo è semplice: perché rifiuta questa idea di base della sovranità come base della democrazia. 
Abbiamo dimenticato che il corrispettivo per l'uguaglianza politica all'interno dei confini è il rispetto di questi cosiddetti confini. 
Se una comunità politica non è più padrona del suo destino, non può definirsi democratica. 
Se si vuole una prova, ricordare questa citazione da Jean-Claude Juncker, il successore ineffabile di Barroso a capo della Commissione europea: " Non ci può essere scelta democratica contro i trattati europei ". Questa dichiarazione è detta per le elezioni greche del 25 gennaio 2015, appena han visto la vittoria di Syriza
In breve, c'è stata l'affermazione della superiorità del principio tecnocratico sul principio democratico, sono soddisfatti della superiorità delle istituzioni non elette sul voto degli elettori
In questo, il signor Juncker e Barroso sono in gran parte responsabili di tragedie che la Francia ha subito e conosciuto.
Fanno propria, consapevolmente o meno, il discorso dell'Unione Sovietica nei confronti dei paesi dell'Europa orientale, che nel 1968, durante l'intervento del Patto di Varsavia a Praga dichiarano: la famosa teoria della sovranità limitata
Colpisce che considerano i paesi membri dell'Unione europea come colonie, o più precisamente di "dominio", la cui sovranità in oggetto è una Francia divenuta metropolitana (Gran Bretagna). Tranne che in questo caso non c'è metropoli. 
L'Unione europea sarebbe un sistema coloniale, senza metropoli. E, forse, è solo colonialismo per procura. Dietro la figura di una presunta Europa unita, che è in realtà divisa dalle istituzioni europee, possiamo discernere il volto degli Stati Uniti, un paese che continua a sostenere i poteri centrali di Bruxelles.

Francia in crisi

Allo stesso tempo, non si può non essere colpiti dalla combinazione di varie crisi in Francia. Quest'ultima passa quindi attraverso una crisi diffusa. I francesi si sentono e si traducono in un grande pessimismo.

Sappiamo cosa sia una crisi economica, e misuriamo ogni giorno che può essere una crisi sociale. Queste crisi creano un profondo senso di insicurezza [8] . Le crisi politiche, non son assolutamente sconosciute, non ne eravamo estranei in questi ultimi 50 anni. Ma c'è nella situazione attuale qualcosa di più, sia quantitativamente che qualitativamente. 
Ora scopriamo cosa può essere una nazione di crisi, in particolare quando si sentono degli movimenti tellurici sotto i nostri piedi, quando ciò che è stato pensato per essere una garanzia è improvvisamente messo in discussione, una cosa che ci è stata risparmiata dalla fine della Quarta Repubblica. 
Da questo sentimento nasce l'insicurezza culturale, che si unisce con l'insicurezza sociale, e produce quello che uno scrittore definisce "disagio identitario" [9] . Dietro i sintomi, c'è una realtà, ed è questa realtà che dobbiamo cercare di capire.

Uno dei motivi di questo pessimismo è il fatto che i francesi hanno la sensazione di essere di fronte ad una barbarie dalle molteplici forme. Siamo al tempo stesso inorriditi e affascinati dalla crescita della barbarie. Intere regioni del mondo sono scivolate in una profonda ferocia. Milioni di persone ne sono le vittime. Abbiamo voluto ignorarlo e abbiamo avuto fino ad ora la sensazione di vivere in una zona protetta, una bolla in cui niente di veramente terribile poteva accadere. Sicuramente i massacri al di fuori colpiscono la coscienza, così come la quantità di ingiustizia e di miseria che si sta accumulando lontano dai nostri confini. Ma una gran parte della popolazione, è rimasta senza parole; la sensazione di vivere in una zona protetta, l'Unione europea, che ha vinto. E' questo sentimento, giustificato o meno, che va in frantumi. I francesi sentono che non solo non sono protetti dall'Unione europea, ma che involontariamente o di proposito, la crisi si aggrava ogni giorno di più.

La barbarie europeista.

Più vicino a noi una forma di barbarie economica ha colpito la Grecia dal 2010. La miseria e la disperazione, ma anche la violenza politica e la sensazione di un esproprio profondo e totale, sia della politica economica che sociale sono ora di nuovo presenti nel cuore dell'Europa. Il fenomeno interessa ora una parte di Spagna e Portogallo. 
Questa barbarie economica supera di gran lunga quello che ci si aspettava da una singola crisi. L'attuazione da parte delle istituzioni europee, in modalità teorica protettiva, porta con sé la condanna del sistema che produce e implementa.

Alla base di questa barbarie, è la distruzione del principio dello stato. Questo stupirà solo chi non conosce nulla della tradizione del discorso sullo Stato e la legge che corre nel mondo occidentale da oltre due millenni. Lo Stato, è quella entità che protegge le persone, che garantisce un corpo di regole accettate da tutti
Ma lo stato può essere concepito fondamentalmente con due sistemi. Può essere di proprietà di un principe, e in questo caso, in realtà, va sconfitto di fretta. Oppure può essere espressione di interesse collettivo: questo è il significato della Res Publica che ha dato gli albori alla nostra repubblica, ed è un complesso più profondo. Il principio repubblicano esiste anche in forme di organizzazione politica, le "repubbliche". Dobbiamo quindi monitorare con precisione l'origine del termine, se vogliamo capire che cosa si riferisce.


3. Ritrovare la Repubblica.

La Res Publica è anche regionalizzata. Questo è un punto essenziale. La solidarietà nasce dalla condivisione delle cose  e la comprensione reale che sono radicate in un dato spazio. Lo Stato qui si identifica con la Nazione. Il legame tra  Stato e  Nazione prende una nuova dimensione con l'esistenza della democrazia.

La Repubblica e la Nazione

La democrazia presuppone la previa definizione di sovranità, perché dalla sovranità deriva  la legittimità che, a sua volta, basa la legalità. E' questa sovranità che rende udibile la solidarietà in giunzione tra le persone e le regioni di un determinato territorio. Se uno abdica la sovranità scarta la solidarietà [10].  
Affermando che il popolo è l'unico detentore della sovranità, la Rivoluzione del 1789 ha completato la costruzione politica e giuridica che fu iniziata nel Medioevo. Dobbiamo ricordare che non è stata creata da essa. Il concetto di sovranità è molto antecedente alla Rivoluzione. Questo è il motivo per cui dobbiamo tornare alla fonte della tradizione intellettuale del mondo occidentale, e provare a vedere che cosa vi è in essa, è subordinata alla volta o alla cultura a ciò che è veramente universale
Questo movimento di ritorno deve essere in grado di distinguere tra il vero internazionalismo, che è un pensiero che è "tra le nazioni", perché ne riconosce l'importanza e cerca di identificare le cause più comuni ed organizza il compromesso, da il pensiero che nega le nazioni, e  in realtà nega anche la democrazia ,e quindi contribuisce alla distruzione di questo principio, affermazione che genera la barbarie.

Stato, nazione, e società.

La società francese sta cadendo a pezzi. In questa terribile situazione si possono trarre dietro la proliferazione di attestazioni d'identità che ci fa regredire dal "noi" al "io". Questo processo è possibile solo perché lo stato-nazione, scarta il vecchio costrutto sociale. La Nazione è ciò che ci protegge dalla "guerra di tutti contro tutti", nelle parole di Hobbes o anomia per citare Durkheim. Certamente vero è il caso che la legge opprime. Ma la peggiore oppressione è sempre dovuta all'assenza di leggi
Tuttavia, queste leggi sono prese come parte della nazione e la rivoluzione del 1789 ha stabilito il popolo sovrano come il giudice supremo di queste leggi.
La democrazia ha quindi necessariamente bisogno della sovranità. Mentre le nazioni sovrane non abbisognano della democrazia, non la democrazia che è nata là, non, dove è privo di sovranità. Qualsiasi tentativo di stabilire uno spazio democratico ha istituito in realtà uno spazio di sovranità. Questi due concetti sono inscindibili, ma, indica chiaramente che la sovranità è il primo.

Questa crisi della Nazione, è anche una crisi di stato. Lascia i cittadini poveri e impotenti di influenzarli dalla situazione a fronte di interessi costituiti, e alcuni dei quali transnazionali. Questo è così perché sono privati ​​del potere di fare e modificare le leggi, e quindi sono privati ​​del potere di organizzare il proprio futuro collettivo. "Non vi è irrimediabilità che la perdita dello stato", ha detto il re di Francia [11] nei tempi antichi, ma che oggi sembra stranamente e tragicamente simile. Il contesto era quello della fine degli anni delle guerre di religione. Sotto l'apparenza di uno scontro religioso tra cattolici e protestanti, il potere, della Spagna, ha cercato di dominare l'Europa. Oggi è cambiato solo il paese ma si fa riferimento sempre a questa stessa situazione . Ma di tutte le guerre civili, conflitti inter-religiosi è il più imperdonabile perché si tratta di scopi oltre misura d'uomo. Quando la posta in gioco è la vita eterna - chi ritiene che vi è - allora tutto diventa possibile e giustificato in quello che allora era considerata la "vita terrena" per  "la vita eterna". Lo scopo estremo può causare estrema barbarie. La guerra di religione è il conflitto che destruttura la società più profonda, che mette i figli contro i genitori, i fratelli contro i fratelli. Così, quando Henry ha fatto questa dichiarazione davanti ai giudici di Rouen, in quanto il Parlamento dell'epoca era un'assemblea dei giudici, ha voluto mettere in chiaro che un interesse più elevato è richiesto agli interessi particolari e la ricerca personale i loro obiettivi legittimi non dovrebbe avvenire a spese del comune obiettivo di vita nella società. Ripristinando il senso della nazione, ha posto fine alla guerra civile.

Misurare quello che c'è di attuale nelle parole pronunciate alla fine del XVI secolo. Una crisi economica ci può impoverire, con ingiustizia sociale che può contribuire a creare barriere tra noi. Tuttavia, la confisca della sovranità nazionale tocca le fondamenta di quella entità che ci consente di vivere insieme.

Le moderne forme di confisca di potere.

La sensazione che i francesi hanno nella profondità di se stessi è la sensazione di confisca di potere, e la sua sostituzione con sonagli che la politica, almeno alcuni di loro, sono un ronzio nelle orecchie. Questo sequestro è, oggi, realtà. Prende la forma di vari trattati che ci legano all'Unione europea e alla presentazione di rappresentanza democratica in un potere non eletto. Questo sequestro è  fatto dalle multinazionali, che impongono, con il tacito consenso dei nostri governi e delle istituzioni europee con le norme che consentono loro di far valere la legge. Questo è, infatti, la questione dell'accordo di libero scambio proposto tra il Nord America e l'Unione europea, o TAFTA Partnership. Transatlantic commercio e gli investimenti [12] . Questa confisca impedisce alle persone di detenere la sovranità nazionale, ricostruire lo stato e costruire le istituzioni che lo adattano, cioè, allo Stato di porre rimedio ai suoi mali. Questo è un problema più sottile, ma in realtà il più importante della crisi economica. Questa sensazione di privazione e di impotenza, aggravata anche da una bassa potenza, e, che teorizza la sua impotenza aiuta a distruggere in profondità quello che è il legame sociale.

Dobbiamo poi discernere i contorni di questa crisi globale in cui siamo immersi.


4. Crisi e posta in gioco

Le nuvole stanno iniziando ad accumularsi sulla società francese, e il dramma che abbiamo vissuto dal 7 gennaio al 9 mostra che queste nuvole stanno per trasformarsi in tempesta, è nel nostro passato che possiamo trovare i princìpi  che ci permettono di proiettarci nel futuro.

La società e la politica.

È opportuno  lamentare. La società non è il prodotto di una omogeneità, sia culturale, religiosa, linguistica o economica. La società non è neppure il prodotto di decisioni consapevoli degli individui il pre-esistente
Gli individui sono in realtà il prodotto della società
Sono diversi perché il processo di produzione sono essi stessi diversi, i miti fondanti della società possono anche essere contestati, il che implica una nuova diversità. Ma questo non è ci riporta che all'ovvio: la politica della società . Questa è la politica che costruisce il legame sociale, e questa costruzione comporta una politica di ridistribuzione permanente. La parola calunniata, se dimenticata, è necessaria la dialettica.

Questo rapporto intimo tra la società e la politica, è necessario guardare come si è verificata questa costruzione in ogni società. Il processo di costruzione della società e anche un processo di differenziazione aziendale. Negarlo, far finta che non ci sono fogli bianchi su cui i pensatori potrebbero scrivere una storia a prescindere dalla storia passata, è la ricetta migliore per portare a tragedie terribili, e il peggio è una guerra civile. Eppure è a questo che oggi tendono le istituzioni europee e l'ideologia europea. Quindi dobbiamo stare attenti a fermare rapidamente questa preoccupante tendenza.

La costruzione della società evidenzia anche le forme che possono identificare la pertinenza attraverso i secoli. Gli antichi sapevano che non c'è legalità senza legittimità, in realtà è la seconda che ha fondato la prima. I miti greci della distinzione romana tra auctoritas e potestas è una lezione che dobbiamo ricordare. Ma il fondamento della legittimità stessa diventa una potenziale fonte di conflitto in quanto la pluralità delle religioni diventa una realtà. Questo è ciò che rivela l'opera di Jean Bodin, che, nello stesso movimento, stabilisce la supremazia del principio di sovranità e si stacca sempre dal legame con una particolare religione. L'unica risposta possibile alle guerre religiose del passato o a coloro che la minacciano oggi, il fondamentalismo di quelli o altri, delle letture letterali, è l'unione tra il principio di sovranità e laicità.

Un altro pericolo minaccia la società, sia per mezzo di accumulazione di ricchezza che è così estrema e diventa odiosa, e sordida corrosione di una ideologia individualista che oggi produce un narcisismo esasperato.
La politica è ora attaccato su due fronti nelle forme del suo funzionamento, ma anche nella privacy della sua relazione con i singoli individui. Questa politica di attacco, e quindi il cuore di quanto prodotto dalla società, ha importanti conseguenze per quanto riguarda le forme di organizzazione di questi ultimi. Questa doppia minaccia è causa della crisi dell'ordine democratico, che, come ogni forma di organizzazione, non è il risultato di "legge naturale", ma l'espressione di una volontà collettiva. Pertanto, il futuro sembra prometterci una scelta tra un ritorno ad un ordine arcaico basato su fantasie di omogeneità della società o di un ordine dispotica basato sul diritto "immorale".

Sovranità e democrazia.

La messa in discussione della sovranità mina la democrazia nel profondo della natura della società francese. Certo, ci possono essere Stati sovrani che non sono democratico; ma non si è mai visto uno Stato democratico che non è sovrano. Quindi questi sono i frutti amari, abbastanza logici, del processo di globalizzazione e la costruzione dell'Unione europea. Affermare che l'Unione Europea è stata concepita, più o meno, per proteggere i popoli contrasta con l'influenza della globalizzazione è una menzogna palese. In realtà è stato in prima linea il movimento che ha sconfitto gli Stati Uniti a favore di grandi imprese multinazionali.
E'  solo l'erede del progetto americano disegnato durante la guerra fredda [13] . E' stato costruito sulle basi di quel che sta succedendo, Kouvelakis Stathis, riferendosi al relativamente recente libro di Perry Anderson [14] , descrive come " ... una presa di distanza da ogni forma di controllo democratico e di responsabilità nei confronti delle persone è un principio costitutivo della complessa rete di agenzie tecnocratiche e altri istituti di esperti che costituiscono la spina dorsale delle istituzioni dell'Unione europea. Ciò che è stato eufemisticamente chiamato il "deficit democratico" è in realtà una negazione della democrazia " [15] .

L'Unione europea è in realtà uno spazio troppo eterogeneo che si potrebbe pensare, come Arnaud Montebourg evoca, ad un protezionismo "europeo". Non ci può essere alcuna sovranità, e quindi democrazia a livello europeo.

Quindi abbiamo bisogno di andare avanti con la ricostruzione di un ordine democratico, vale a dire un sistema politico per articolare la questione della sovranità e della legittimità e di garantire la democrazia, e dobbiamo farlo guardando le cause di crisi e non solo le sue conseguenze. Per fare questo, è necessario una profonda ristrutturazione delle forze politiche. Ci devono essere molte personalità nei partiti che sono al potere, o sono state, che sono convinti della necessità dell'economia francese per forme di tutela e di un forte deprezzamento della moneta. Sappiamo che questo è in realtà possibile nel contesto di una uscita dall'euro e il ritorno al franco. Ma questi partiti sono fatti in modo che la "direzione" di questi, un piccolo gruppo di uomini e donne, operino quasi indipendentemente da ciò che pensano i dirigenti di base e intermedi di questi partiti.

Queste "indicazioni" non si basano solo sulle istituzioni interne delle loro organizzazioni, ma anche su reti clientelari e diffusa corruzione, per costruire la loro indipendenza dai loro elettori. A questo si aggiunge una politica di pressione e di denigrazione sistematica di tutti coloro che non la pensano come loro. Nel complesso, il livello di democrazia in questi partiti si sta dimostrando molto più basso di quanto non sia nel sistema politico in generale. Si dovrà  passare attraverso una rottura e ricomposizione di questi partiti, sperando che i sostenitori recuperino la sovranità nazionale e si uniscano o almeno lavorino insieme. Il processo di rottura è, a quanto pare, in attuazione in questi partiti di potere. La ricomposizione può essere imminente. Più velocemente si concretizzerà, meglio sarà per il paese.

Ripensare l'ordine democratico


Ricostruire l'ordine democratico oggi, qui e ora, la prospettiva che porta garantisce il mantenimento di una società che è relativamente tranquilla e ha conseguenze stabilizzanti. Ecco perché, oggi, la difesa dell'ordine democratico e dei suoi fondamenti, la sovranità e la laicità, prende le dimensioni di un imperativo categorico. Ma questa riforma radicale può imporre o implicare elementi di populismo. Per combattere la tendenza spontanea delle burocrazie a produrre leggi, indipendentemente dalla loro legittimità, è richiesto l'uso di elementi di legittimità carismatici. E' il senso del ripristino, su questioni chiave, le procedure referendarie che rientrino a far parte di questa forma di legittimità. Soprattutto, è bene ricordare che i poteri dittatoriali, nel loro senso originale e non nel senso volgare che ha preso la parola "dittatura", fanno parte dell'ordine democratico. 
Così non prenderne parte, scuote i nostri all'azione di tutti, interrotti quando si porrà la questione di abrogare leggi approvate in termini giuridici, ma certamente del tutto illegittime. La bussola in questi tempi incerti sarà come sempre la difesa della sovranità  Nazionalestringerci attorno al suo sovrano, vale a dire il popolo, come una saldatura politica di tutto il bene comune e la Res Publica .





Note:

[1] Todd E., Qui est Charlie ? Sociologie d’une crise religieuse, Paris, Le Seuil, 2015.

[2] « La genèse de la laïcité » in Blandine Kriegel, La politique de la raison, Paris, Payot, 1994.

[3] Colombani J-M, « Quels chemins pour les grecs ? », in Direct Matin, n° 1630, 2 février 2015, p.3.

[4] Gales A., « Que pense Podemos ? », article publié dans la revue Ballast, 23 avril 2015, http://www.revue-ballast.fr/que-pense-podemos-14/

[5] Poulat E. Notre Laïcité, ou les religions dans l’espace public, Bruxelles, Desclées de Bouwer, 2014.

[6] Bodin J., Les Six Livres de la République, (1575), Librairie générale française, Paris, Le livre de poche, LP17, n° 4619. Classiques de la philosophie, 1993.

[7] [7] Bodin J., Colloque entre sept sçavants qui sont de différents sentiments des secrets cachés des choses relevées, traduction anonyme du Colloquium Heptaplomeres de Jean Bodin, texte présenté et établi par François Berriot, avec la collaboration de K. Davies, J. Larmat et J. Roger, Genève, Droz, 1984, LXVIII-591, désormais Heptaplomeres.

[8] Castel R., L’insécurité sociale. Qu’est-ce qu’être protégé ?, Paris, Le Seuil et La République des Idées, 2003.

[9] Bouvet L., L’insécurité culturelle. Sortir du malaise identitaire français, Paris, Fayard, 2015.

[10] Guilluy C., La France périphérique. Comment on sacrifie les classes populaires, Paris, Flammarion, 2014.

[11] Discours de Henri IV au Parlement de Rouen en 1597.

[12] R. Cherenti et B. Poncelet Le Grand marché transatlantique : Les multinationales contre la démocratie,. Éditeur Bruno Leprince, mai 2011.

[13] Ce qui fut déjà analysé par J-P. Chevènement La faute de M. Monnet, Paris, Fayard, 2006.

[14] Anderson P. Le nouveau vieux monde, Marseille, Agone, 2011 (en anglais The New Old World (2009) Londres, Verso).

[15] Kouvelakis S., in C. Durand (sous la direction de), En Finir avec l’Europe, Paris, La Fabrique, mai 2013, p. 51

sabato 23 maggio 2015

Bomba al neutrone sganciata sullo Yemen da aereo israeliano IAF con bandiera Saudita ...


Bomba al neutrone sganciata sullo Yemen da aereo israeliano IAF con bandiera Saudita ...

Gordon Duff e Jeff Smith
veteranstoday
trd Sa Defenza




Immagine del Fallout 


Un video ricevuto dallo Yemen, che si ritiene risalire al 20 maggio 2015 relativa ad una esplosione, quando è stata analizzata da esperti di armi nucleari si è rilevato che si tratta di una bomba al neutrone, e non poteva essere altro che un attacco israeliano.

L'analisi:

A. Non è una bomba convenzionale da 2000 libbre . E 'molto più grande.

B. Che sia un MOAB più grande di 4.000 libbre ???? Peso massimo per un F-15/16 è un 
payload di circa 2000 libbre per bomba,  ciò esclude un MOAB.


C.  Sembra essere una piccola bomba a neutroni. La dimensione, il colore, l'effetto fulmine e la durata della palla di fuoco la sospensione dell'erogazione a mezz'aria e il grande fungo atomico sembra non lascino dubbi. Il dispositivo di ripresa CCD mostra immagini "scintillanti" (rilevamento di neutroni) i lampi bianchi dei pixel nel video. Quando la foto ha lampi di pixel bianchi, vuol dire che è stato colpito dai neutroni della palla di fuoco dell'esplosione nucleare, e sovraccaricando il circuito elettronico del CCD produce lampi bianchi.

Se la radiazione è troppo elevata brucerà il chip come è successo 
a Fukushima con le telecamere dei robot.


D. L'aereo è molto probabilmente  un F-16 israeliano con una verniciatura saudita. Essi non nascondono il loro uso, solo che non lo ammettono pubblicamente e l'AIEA non fa e non dice nulla. Questo è un vero crimine di guerra. Le Nazioni Unite ignorano a meno che gli Stati Uniti, la Francia o GB si lamentano ... la Russia e la Cina tacciono.

E con questo siamo alla seconda volta che si usano armi nucleari in Yemen da parte dell'Arabia Saudita ............ ..

Jeff Smith è un fisico nucleare ex ispettore dell'Aiea.



Ingegnerizzazione del Clima, il cibo e contaminazione dei nostri Alimenti...

Ingegnerizzazione del Clima, il cibo  e 

contaminazione dei nostri Alimenti...


Dane Wigington

geoengineeringwatch

trd Sa Defenza



Numerosi brevetti di neoingegneria climatica richiedono di essere spruzzati nei cieli del pianeta per la diffusione di nanoparticelle di metalli pesanti. 
Le nanoparticelle sono incomprensibilmente piccole (un miliardesimo di metro) e sono quindi biodisponibili in tutti i sensi. 

  • Particelle di qualsiasi materiale di questa grandezza sono molto pericolose per il sistema respiratorio umano. 
  • Se i materiali in questione sono metalli pesanti come l'alluminio e bario, l'equazione è molto peggiore. 


  • Cosa succede quando l'intera superficie della Terra sarà  sprofondata in uno strato estremamente pericoloso di nanoparticelle di metalli pesanti gettati dai cieli sopra noi? 
  • Che cosa succede quando questo processo continuerà per settimane, mesi, anni e persino decenni? 
  • Una volta che lo trovi nelle precipitazioni, nei terreni e corsi d'acqua saturi di questo tipo di contaminazione, e viene poi assorbito da tutti gli organismi viventi. Ciò significa che ogni nostro respiro, e in tutto quello che mangiamo (anche biologico) sono stati contaminati. 

La maggior parte del sistema immunitario umano inizia nell'intestino, durante la digestione. 
Cosa succede quando il nostro approvvigionamento alimentare è irrimediabilmente contaminato con materiali in questione? 
Questo è il caso che siamo tutti parte dell'esperimento così tutti  scopriremo ben presto quanto e come si deteriora la nostra salute. 
L'articolo qui sotto non affronta direttamente il tema della ricaduta della geoingegneria (che matematicamente  fonte di contaminazione da nanoparticelle combinate), ma questo è irrilevante. 
Non importa quale sia la fonte di contaminazione da nanoparticelle, perché l'effetto è lo stesso.



Nanoparticelle negli alimenti e nell'acqua trovate nell'intestino alterano il microbioma

nanoparticelle di ossido di metallo

Fonte: Activist post , articolo Heather Callaghan

Nanotecnologia - cioè particelle di ossido di metallo * come il biossido di titanio - sono sempre più utilizzati nella catena alimentare commerciale, nei beni di consumo, nella cura del corpo e nel trattamento delle acque.

Il microbioma intestinale è l'argomento più interessante di cui parla oggi la scienza, perché non ancora riconosciuto dalla comunità medica l'importanza della salute dell'intestino del cervello umano, degli ormoni, dell'immunità, della salute mentale e altro ancora. Il mantenimento di un intestino sano ha a che fare con il benessere ottimale.

Purtroppo, tante sostanze introdotte nella catena alimentare senza testarle, ne essere ispezionate, o regolamentate o anche cortesemente  dichiarate la cortesia di un'etichetta chiara. I consumatori non hanno idea di quello che stanno assimilando o come andrà a incidere sulla loro salute a lungo termine.

Eppure, un documento fresco di stampa di  Environmental Engineering Science mostra la ragione per cui questa pratica deve essere prontamente verificata.

Si potrebbe desiderare di copiare e incollare ""Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota "Il documento Word, E una Disposizione in Lettura Gratuita Fino al 1 giugno  [sa defenza lo ha copiato per voi e messo a fine articolo] .

I ricercatori hanno scoperto che le nanoparticelle hanno condotto a molteplici differenze misurabili, nella comunità microbica normale,  nell'intestino umano, e scrivono:

La comprensione delle interazioni tra NP e batteri in un modello di colon sperimentale indicano i potenziali impatti da esposizione alle NP sul sistema intestinale, e la salute umana, in generale. 
Salute e microbioma umano hanno importanti implicazioni per la salute individuale in generale.
Nel complesso, le nanoparticelle hanno causato letali modifiche significative al fenotipo della comunità microbica, che possono riflettersi su correlati effetti sulla salute in generale.

Gli autori dell'articolo hanno introdotto singolarmente tre differenti nanoparticelle - ossido di zinco, biossido di cerio, biossido di titanio e - comunemente utilizzati in prodotti come dentifrici, cosmetici, creme solari, rivestimenti e vernici, in un modello di colon umano. Il modello del colon imita il normale ambiente intestinale e contiene i microrganismi in genere presenti nel microbioma umano. Anche se si sono fermati poco prima di incolpare le nanoparticelle per gravi danni arrecati al colon (ma è stato solo accennato), hanno dimostrano che l'esposizione alle nanoparticelle ha creato una visibile significativa differenza di come funzioni il microbioma.

I ricercatori hanno descritto cambiamenti in entrambe le caratteristiche specifiche della comunità microbica e del microambiente intestinale dopo l'esposizione alle nanoparticelle. Ad esempio, fanno notare la passata e attuale ricerca e il danno alla membrana delle cellule eucariotiche, gli effetti negativi in ​​Escherichia coli, che attraversa il rivestimento epiteliale, e ceppo specifici, gli effetti antimicrobici e molto altro ancora. Il loro lavoro è anche una grande raccolta di precedenti ricerca sulle nanotecnologie.

Questo dimostra come tali studi avrebbero dovuto essere presi in considerazione prima che queste sostanze fossero autorizzate nel trattamento dentro sostanze per uso cosmetico o altro uso sul tratto intestinale.

La ricerca precedente ha anche dimostrato gli effetti cancerogeni delle nanoparticelle nel tratto intestinale. Bisogna evitare  di nutrirsi con cibo spazzatura confezionato, caramelle e nella cura del nostro corpo con prodotti che contengono agenti sbiancanti (come la gomma, Mentos e crema solari commerciali).
Tuttavia, ci sono altri tipi di nanoparticelle nei beni di consumo che passano quasi inosservati, un modo per evitarli è di ridurre la dipendenza dai prodotti commerciali, potrebbe essere un modo per migliorare la microbiota intestinale.

Altri articoli di ricerca cercano di influenzare il pubblico portando a loro conoscenza il 'nanotech' che è già presente nel loro cibo, utilizzando etichette vergognosamente assurde come "technology rejecters" per coloro che preferiscono pagare di più per evitare le nanoparticelle alimentari. Vogliono capire che cosa ci vuole per ottenere l'acquiescenza, anche se nessuno ha mai chiesto se questi materiali siano lavati.

Segui il tuo istinto finché ti è ancora possibile!

* nell'immagine sopra son raffigurate le particelle da dimensioni di nanometri - circa 100.000 volte più piccole rispetto al diametro di un capello umano. - 


See more at: http://www.naturalblaze.com/2014/12/injectable-3d-vaccines-with.html#sthash.uaYixADa.dpuf



Segue l'articolo di riferimento che abbiamo copiato per voi

Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota

To cite this article:
Taylor Alicia A., Marcus Ian M., Guysi Risa L., and Walker Sharon L.. Environmental Engineering Science. -Not available-, ahead of print. doi:10.1089/ees.2014.0518.
Online Ahead of Print: April 24, 2015

Author information

Alicia A. TaylorIan M. Marcus,** Risa L. Guysi, and Sharon L. Walker*,
Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California.
**Present address: Faculté de medicine, Université Paris Descartes Sorbonne Paris Cité, Paris, France.
Present address: Carollo Engineers, 7888 Mission Grove Parkway South, Ste 100, Riverside, California.
*Member of AEESP.
Corresponding author: Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521. Phone: 951-827-6094; Fax: 951-827-5696; E-mail: 
Received: November 25, 2014
Accepted in revised form: March 12, 2015

ABSTRACT

Nanoparticles (NPs) are becoming prevalent in consumer goods, including foods and cosmetics. Understanding the interactions between NPs and bacteria in an engineered model colon can indicate potential impacts of NP exposure on the gut, and therefore overall human health. Human microbiome health has important implications to overall individual health. This work aims at quantifying the phenotypic response to NP ingestion of a model microbial community within a model colon. Three NPs at environmentally relevant concentrations (0.01 μg/L ZnO, 0.01 μg/L CeO2, and 3 mg/L TiO2) were individually introduced into a model colon to identify the subsequent impact on the gut microbial community. Results indicate that NPs cause the microbial community's phenotype to partition into three distinct phases: initial conditions, a transition period, and a homeostatic phase, with the NP-exposed community displaying significant differences (p<0 .05="" acid="" affected="" and="" by="" changes="" community="" content="" electrophoretic="" extracellular="" fatty="" from="" hydrophobicity="" in="" including="" indicate="" mobility="" multiple="" notably="" nps.="" of="" phenotypes="" phenotypic="" polymeric="" production="" s="" short-chain="" stability="" sub="" substance="" sugar="" the="" tio="" traits.="" unexposed="" were="" which="">2

 NPs led to extended phenotypic transformations for hydrophobicity when compared with the other NPs, likely due to its lack of dissociation and greater stability. Overall, the NPs caused nonlethal, significant changes to the microbial community's phenotype, which may be related to overall health effects.

Introduction

Nanotechnology offers many positive benefits to human health, such as more efficient drug delivery, sensor development for toxic substances detection, and medical diagnostic techniques (Thess et al.1996; Kong et al.2000; Long and Yang, 2001; Martin and Kohli, 2003); however, the increasing popularity of nanotechnology may lead to a rise in potential accidental exposures through ingestion or via environmental release of nanoparticles (NPs). It is estimated that 15,600 metric tons year−1 of TiO2 nanomaterials, 3,700 metric tons year−1 of ZnO nanomaterials, and 300 metric tons year−1 of CeO2 nanomaterials enter water systems with the majority of these NPs discharged from wastewater treatment plants (Keller and Lazareva, 2013; Keller et al.2013).
TiO2 NPs are used daily by consumers with products such as toothpastes, cosmetics, and sunscreens (Wolf et al.,2003; Kaida et al.2004) and may easily be ingested. CeO2 NPs are introduced into water resources through the disposal of coatings, pigments, and paints (Keller et al.2013). Much like CeO2 and TiO2, ZnO NPs can enter bodies of water not only through discarded coatings, pigments, and paints but also from the disposal of cosmetics (Keller and Lazareva, 2013; Keller et al.2013). These three NPs were chosen based on their potential for human exposures through their widespread use in many consumer products, foods, and because of their potential to be in treated drinking water (Wolf et al.2003; Kaida et al.2004; Limbach et al.2005; Auffan et al.2009; Gottschalk et al.,2009; Kiser et al.2009; Weir et al.2012; Keller and Lazareva, 2013; Keller et al.20132014).
NPs selected in this study have been reported to have toxic, nonlethal effects on organisms. Recent work has shown that TiO2 NPs can cross the epithelial lining in an intestinal model cell line via transcytosis (Koeneman et al.2010). While TiO2 did not cause cell death, there are implications of other nonlethal effects to the cells. CeO2 NPs have caused negative effects in Escherichia coli, reduction in plant germination, and have caused membrane damage in eukaryotic cells (Zeyons et al.2009; Kim et al.2010; López-Moreno et al.2010). In addition, research has also shown the CeO2 NPs may have strain specific antimicrobial effects (Pelletier et al.2010). CeO2 particles are found in personal care products, and humans may also risk exposure to CeO2 NPs through sunscreens and cosmetics (Limbachet al.2005; Auffan et al.2009). CeO2 is also one of the most commonly utilized NPs, and it is used in a wide variety of applications. The disposal of these products into water sources is a potential route of exposure for humans. ZnO NPs exhibit toxicity to eukaryotic cells, decreasing cell viability and proliferation, and disrupting membrane integrity (Kim et al.2010). ZnO NPs have also shown antimicrobial effects on bacteria; these effects are size and concentration dependent, as well as species specific (Yamamoto, 2001). However, it is important to note that many in vivo studies with higher-level organisms often give mixed results on toxicity (Aillon et al.2009; Chen et al.2009; Khlebtsov and Dykman, 2011). Therefore, these three NPs were chosen to determine the potential toxicity on the gut microbiota, which is likely to occur through exposure routes such as accidental dosing and ingestion.
In vitro function of gut environments has previously been characterized by monitoring enzymatic activity (Van den Abbeele et al.2010; Maathuis et al.2012), short-chain fatty acid (SCFA) production (Jiménez-Vera et al.2008; Van den Abbeele et al.2010; Maathuis et al.2012; Thévenot et al.2013), and by determining microbial community genotype (van der Werf and Venema, 2000; Rajilić-Stojanović et al.2010; Van den Abbeele et al.2010; Maathuis et al.2012). Gut organisms play an important role with indispensible functions to the human host such as vitamin production, digestion, and immune system activity (Cummings, 1984; Hooper et al.2002; Kelly et al.2003).
The role of the gut microbiota is so prominent in human health that researchers have found links between gut microbes and numerous diseases (Bäckhed et al.2004; Ley et al.20052006; Manichanh et al.2006; Frank et al.,20072011; Lepage et al.2011; Mondot et al.2011; Hsiao et al.2013). In fact, changes in diet alone can cause rapid transformations in the activity and structure of the gut microbiota (David et al.2014), indicating that the microbiota is sensitive with a quick reaction time to changes in the human intestines. This work highlights the importance of studying the effects of environmental contaminants on the gut microbiota.
Understanding the gut microbiome and its importance to human health with techniques such as molecular methods (Collins and Gibson, 1999; Matsuki et al.2004; Eckburg et al.2005; Armougom et al.2009) will give rise to more treatment and disease prevention options. However, more information is needed than just sequencing data to fully understand the complex and dynamic function of the gut microbiota. Monitoring changes in the community's characteristics over time, such as the physical-chemical features, may provide a more complete representation of the gut's function and role in human health. Here, phenotypic characterization techniques based on colloidal (e.g., cell) transport experiments provide valuable insights that may not typically be measured with a microbiota study. To date, this is the first paper analyzing the effects of environmentally relevant concentrations of NPs and their effects on the physical-chemical components of the gut community.
Published work with this model colon design has shown that microbial communities in the gut, wastewater, and groundwater can undergo significant phenotypic and genotypic changes when a perturbance is introduced, such as a pathogen (Marcus et al.2013). We hypothesize that as compared with pathogen-induced disturbances, the model colon's microbial community will undergo similar phenotypic changes when the colon is dosed with environmentally relevant concentrations of three NPs: TiO2, CeO2, and ZnO.

Experimental Protocol

Microbial community and model colon
Experimental parameters measured in this work were identical to Marcus et al. (2013) as was the preparation of the microbial community, the microbial medium representing digested food entering the large intestine (Minekus et al.,1999), and the in vitro model colon reactor (Jiménez-Vera et al.2008; Marcus et al.2013). The only exception was that the microbial community was donated by and developed (Apajalahti et al.1998) from a healthy 26-year-old female volunteer who had not received antibiotics in more than 8 months. Briefly, frozen stocks of the microbial community were stored at −80°C and each week a stock community was thawed, inoculated into a 200 mL flask containing colon media (Minekus et al.1999), and incubated for 24 hrs before being pumped into the dialysis tube inside the custom colon reactor.
A human colon was replicated by using a custom-built reactor (Marcus et al.2013), which represented conditions inside a proximal colon (Nugent et al.2001). The model colon ran for consecutive 5-day-long experiments. Colon effluent, or waste, was collected thrice a day during feedings for characterization experiments. The model colon was run for a minimum of two runs (two 5-day-long experiments) per experimental condition to ensure reproducible data. Additional details and images of the model colon set-up are located in the supplementary information (SI) inSupplementary Fig. S1.
NP selection
Zinc oxide (ZnO; Meliorum Technologies), titanium dioxide (TiO2; Evonik Degussa Corporation), and cerium dioxide (CeO2; Meliorum Technologies) NPs were selected for this work. They have previously been characterized in another study with the primary particle size for each NP reported as 10, 21, and 10 nm, respectively (Keller et al.2010). Additional characteristics are listed in the Keller et al. study for the NPs, such as phase and structure, surface area, isoelectric point, purity, and electrophoretic mobility (EPM). Additional studies have also been conducted using these identical NPs to study their transport, aggregation, and effects on soil microbial communities (Ge et al.2011; Thio et al.2011; Chowdhury et al.2013).
Environmentally relevant NP concentrations were chosen to emulate human exposures to NPs through ingestion of both food and drinking water at 0.01 μg/L ZnO NP, 0.01 μg/L CeO2 NP, and 3 mg/L TiO2 NP (Gottschalk et al.2009; Kiser et al.20092013; Weir et al.2012; Keller and Lazareva, 2013). Recent work has also indicated that adults in the USA ingest 5 mg TiO2 per day, half of which is in the nano-size range (Lomer et al.2000; Powell et al.2010). Exposure routes and reliable dosing information of NPs that are embedded in solid matrices are difficult to predict, and this is often a limitation of analytical techniques (Nowack et al.2012; Yang and Westerhoff, 2014). The exposure levels used in this study were predominately selected from literature values that give predictions on amount of NPs in water and food sources (Gottschalk et al.2009; Kiser et al.2009; Weir et al.2012; Keller and Lazareva, 2013; Keller et al.2013).
NPs were added in bulk to the colon media before autoclaving and without alteration to achieve the concentrations mentioned earlier; this eliminated any contamination issues that may have occurred by adding NPs to the colon reactor independently of the food source. The addition of the NPs to the sterile food source also provided a realistic exposure scenario that can provide the possibility for representative NP transformations (Albanese and Chan, 2011; Levard et al.20122013; Lowry et al.2012a2012b; Lombi et al.2013; Reidy et al.2013). During the week-long experiments, the sterile colon media containing the NPs was continually stirred, and thrice a day, 100 mL was added to the model colon by pumping the sterile colon media into the reactor. During each feeding, 100 mL of colon effluent was also removed for characterization experiments.
As a control, the model colon was run without NPs for two runs (two 5-day-long experiments) to determine the gut microbiota phenotype in the absence of NPs. All NP experiments were run for a minimum of two runs (two 5-day-long experiments) to ensure reproducibility, and all colon experiments were run under dark conditions to eliminate light effects. Additional controls were conducted to test the EPM and hydrophobicity of the NPs as a function of the extreme range of pH in the gastrointestinal tract. The purpose of this was to account for possible transformations of NPs and their subsequent changes in physicochemical properties. These tests are listed in the SI and mentioned in theDiscussion section.
Phenotypic characterization of microbial community
Changes in the gut microbiota phenotype were examined with the following analyses: cell concentration, sugar and protein content of the extracellular polymeric substance (EPS), EPM (an indicator of the relative surface charge), hydrophobicity, and cell size following published methods (Marcus et al.2012a2012b2013). Briefly, on daily sampling, bacteria from the model colon were washed with centrifugation (3,700 g) and then suspended in a 10 mM KCl solution before all phenotypic characterizations. All samples collected for all characterization methods were measured in three replicates twice a day at the same time points to eliminate additional variables. Additional details on these methods can be found in the SI.
Biochemical characterization of microbial community
Changes in SCFA production, pH, and conductivity of the gut environment were monitored to determine the effects of the NPs on the microbial community and gut environment. pH (Thermo Scientific™ Orion™ Model GD9156BNWP) and conductivity (YSI 3200 Conductivity Instrument Model # 3200 115V) of the colon effluent were measured twice a day at the same time points with three replicates each for all control and NP experiments. Conductivity is an indirect measurement of the metal ion dissociation from the NPs; measuring ionic content of the colon effluent gives approximations of changes in ionic strength (Griffin and Jurinak, 1973). Samples for SCFA analysis were collected in three replicates twice a day at the same time points from the colon effluent and polyethylene glycol (PEG) solution and were stored at −20°C until analysis with the gas chromatography flame ionization detector (GC-FID) (Agilent, Santa Clara, CA) using previously published methods (Venema et al.2003; Marcus et al.2013). The total concentration of the SCFAs was determined based on both the colon effluent and PEG samples. Butyric acid and acetic acid were analyzed by integration under a fitted flame ionization detection curve. Propionic acid is not reported due to the inability to integrate under the curve and account for accurate measurements of this SCFA.
Statistical analyses
All data was tested for normality and equal variance and analyzed with a one-way analysis of variance (ANOVA) and a Student's t test in Excel (v.14.0; Microsoft, Redmond, WA) to determine the phenotypic variation of the microbial community. Results were considered significant if p<0 .05.="" p="">

Results

All data presented in the results are based on a minimum of two 5-day-long experimental runs in the model colon. All data points collected are a culmination of a minimum of three replicates per measurement. Additional details are found in the SI regarding control experiments used in this study.
Phenotypic characterization
Extensive phenotypic testing of the microbial community was not only chosen based on known human health indicators such as SCFA production but also used common evaluation techniques, such as surface charge, hydrophobicity, cell concentration, and EPS content, that are associated with environmental microbial community sampling (Topping and Clifton, 2001; Wong et al.2006; Tazehkand et al.2008; Bolster et al.20092010; Marcuset al.2012a). These nontraditional testing methods were selected to further characterize the gut environment and microbial community and the changes that may occur during perturbances.
Data for cell hydrophobicity, EPM, and the sugar and protein content of the EPS were partitioned into three statistically different phases (p<0 .05="" 2="" 5-day-long="" and="" data="" days="" experiments.="" i="" same="" statistically="" the="" throughout="" tuesday="" wednesday="" were="">p

>0.05), and Thursday and Friday (days 4–5) data were also statistically the same (p>0.05). Therefore, weekdays were grouped in the following manner as three significantly different time points: an initial phase on Monday (day 1), a transition phase on Tuesday and Wednesday (days 2–3), and a homeostatic phase on Thursday and Friday (days 4–5). Data for all of the phenotypic characterization tests are also displayed per daily values and can be found in the SI (Supplementary Figs. S2–S7).
For cell hydrophobicity, all three metal NPs altered cellular hydrophobicity when compared with the control, ranging from a 0% to 10% increase during the course of the 5-day experiments (Fig. 1). All day 1 values (for all three NPs and control) were statistically the same (1–5%±0.8–5.3%, p>0.05). CeO2 and ZnO showed significant increases in hydrophobicity (p<0 .05="" 1="" 2="" and="" between="" day="" days="" eo="" sub="">2
 increased from 0.9%±4.4% to 19.0%±5.3%, ZnO increased from 8.4%±5.3% to 15.0%±8.2%), whereas all three metals lead to significant increases in cellular hydrophobicity from day 1 to days 4–5 (CeO2 from 0.9%±4.4% to 34%±16.8%, ZnO from 8.4%±5.3% to 31.0%±14.1%, and TiO2 from 4.5%±0.6% to 30%±14.8%).
FIG. 1. (A) Comparison of production of short-chain fatty acids (SCFAs, acetic and butyric acids) over 5-day-long experiments in the model colon in the presence and absence of TiO2, CeO2, and ZnO NPs. SCFA samples were collected twice a day for a minimum of 2 weeks and analyzed in triplicate with GC-FID. Each data point is an average of a minimum of 60 values averaged that were collected over the course of two experimental runs (two 5-day-long experiments) with samples in triplicate collected twice a day. (B)Hydrophobicity of bacterial cells is displayed as a function of NP exposure in the model colon during the 5-day-long experiments. Hydrophobicity was measured twice a day in triplicate. (C) Electrophoretic mobility (EPM), an indicator of the relative surface charge, of bacterial cells was measured in triplicate twice a day during the course of the 5-day-long experiments for a minimum of two runs. All measurements were made on washed cells from colon effluent. Error bars indicate standard deviation.
EPM (an indicator of the relative surface charge) of the microbial community was partitioned into three distinct phases. EPM became significantly less negative and was near neutral during the mid-week phase (days 2–3) for all three NPs when compared with the control (control =−1.1±0.2 [(μm/s)/(V/cm)], NPs range from −0.7±0.2 to −0.9±0.3 [(μm/s)/(V/cm)], Fig. 1). EPM then became significantly more negative during the homeostatic phase (days 4–5, control=−0.9±0.6 [(μm/s)/(V/cm)], NPs range from −0.97±0.5 to −1.2±0.4 [(μm/s)/(V/cm)]) (p<0 .05="" p="">
Sugar and protein content of the EPS was also partitioned into three significantly distinct data points (Fig. 2). The sugar content of the EPS significantly peaked mid-week during the transition phase (days 2–3, control=3.6±0.2 mg/cell×1010, TiO2 and CeO2 6–8.5±1.7–3.5 mg/cell×1010) for TiO2 and CeO2 NPs (p<0 .05="" content="" had="" no="" p="" protein="" significant="" the="" trends.="" whereas="">
FIG. 2. Average protein (A) and sugar content (B) of the extracellular polymeric substance (EPS) was measured in triplicate once a day during the course of the 5-day long experiments for a minimum of two runs (two 5-day-long experiments). EPS samples were collected once a day from the colon effluent and analyzed for sugar and protein content in triplicate. Error bars indicate standard deviation.
Cell concentration decreased from 4–5.5×1010 cells/mL to 1–3×1010 cells/mL during the course of the 5-day-long experiments for all conditions (data not shown); no significance was noted between the control (without NPs) and the three metal NPs, indicating that NPs did not have an effect on cell concentration in the model colon.
There was no significant difference (p>0.05) in cell size (radius) within the control experiments during the course of the 5-day-long experiment (Table 1), indicating that in the absence of NPs the cell size remains constant inside the model colon. However, significant changes (p<0 .05="" all="" cell="" ceo="" data="" did="" distinct="" during="" exposure="" in="" into="" metal="" not="" nps.="" other="" partition="" phases="" phenotypes.="" seen="" size="" sub="" the="" three="" to="" were="" with="">2
 caused cells to decrease significantly for the entire duration of the experiment when compared with the controls; specifically, cells were significantly smaller during the CeO2 exposure on days 4 and 5 (control 0.60±0.02–0.62±0.02 μm, CeO2 days 4 and 5=0.46±0.02–0.47±0.02 μm). Of the three NPs, CeO2 caused the most significant deviations from the control cell size. TiO2 NPs caused a decrease in cell radius on days 3 and 5, exhibiting a smaller cell size, 0.59±0.01 and 0.55±0.05 μm, when compared with the control. Of the three NPs, TiO2 caused the least amount of changes in cell size. When compared with the control, ZnO caused significant (p<0 .05="" 0.53="" 0.59="" 1="" 3="" 5="" and="" cell="" changes="" days="" decreases="" elicit="" for="" gut="" in="" indicate="" m="" marginal="" microbiota="" multiple="" nps="" occurring="" overall="" p="" phenotypes.="" phenotypic="" size="" summary="" that="" the="" to="">
Data table
Table 1. Cell Size Measurements as a Function of Nanoparticle Exposure

Biochemical characterization
SCFA production remained relatively constant between the control and all NP conditions (Fig. 1). The only significant result occurred during exposure to CeO2 and showed a decrease in butyric acid production (p<0 .05="" acid="78.0±16.0" butyric="" control="105.8±13.9" mm="" p="">
Changes in pH were monitored twice a day from the colon effluent. During the three individual NP exposures, the pH was significantly lower during the transition phase condition. The model colon expressed a lower pH for each NP when compared with the control for days 2–3 [p<0 .05="" 2="" 3="" 6.6="" a="" and="" class="ref fig" control="" day="" id="f3" nbsp="" ph="7.2±0.2" style="color: #892035; text-decoration: underline;">Figure 3
demonstrates comparisons among pH values for all experimental conditions. Day 1 pH values for the controls and the TiO2, CeO2, and ZnO NPs have a pH range between 6.8 and 7.2±0.06–0.3, with no significance between the control and the three NP pH values (p=0.07). For day 2, the pH was significantly lower for all three NPs (NP pH between 5.4 and 6.8±0.2–0.7, control=7.2±0.2) when compared with the control pH. Day 3 showed a significantly lower pH in the presence of TiO2 and CeO2 (day 2 control pH=6.6±0.3, TiO2 and CeO2 pH<4 .5="" 4="" 5.="" and="" between="" conditions="" control="" days="" differences="" during="" no="" np="" p="" significant="" the="" there="" were="">
FIG. 3. (A) Change in pH during the course of the 5-day-long experiments for the control and three NPs: TiO2, CeO2, and ZnO. pH measurements were taken from the colon and were measured in triplicate twice a day during the course of the 5-day-long experiments for a minimum of two runs (two 5-day-long experiments). (B) Change in conductivity (units) during the course of the 5-day-long experiments for the control and three NPs: TiO2, CeO2, and ZnO. Conductivity measurements were taken from the colon effluent in triplicate twice a day for a minimum of two runs, resulting in a minimum of 60 data points. Error bars indicate standard deviation.
Increasing conductivity trends (Fig. 3) were noted for CeO2 exposures, with only day 2 data significantly higher than the control (p=0.02, control=5.9±0.1 μS/cm, CeO2=6.7±0.5 μS/cm). ZnO on day 3 (p=0.002) and day 5 (p=0.008) had a lower conductivity for both days when compared with the control (control=6.2±0.1 μS/cm, ZnO=5.0±0.5 μS/cm). TiO2 did not cause a statistical change in conductivity. Overall, biochemical characterization demonstrated that slight changes occurred within the model colon reactor due to the NPs.


Discussion

Techniques used in this work offer unique insights into alterations to the microbial metabolic processes inside of a model colon caused by NPs. An important consideration when studying the gut microbiota and interpreting results is that one human sample does not represent the high variability and diversity of gut microbiomes present in the human population. However, work has shown that even pure cultures of genetically identical bacteria can behave in radically different ways under the same experimental conditions (Kulasekara et al.2013). This may explain some of the variation seen within the same conditions.
Here, the NPs added into the system clearly affected the phenotypic characteristics of the microbial community as well as the gut microenvironment. It is also important to note that the system also exhibits small variation within the control conditions on a weekly basis, specifically, with the cell size (no significant difference during control conditions, 0.59±0.05–0.62±0.02 μm) and the EPM (−0.90±0.2 to −1.1±0.2 [(μm/s)/(V/cm)]. Therefore, the system may accurately reflect a human gut microbial community.
Phenotypic characterization
Changes in cellular hydrophobicity have been linked to the formation of biofilms (Schäfer et al.1998; Marcus et al.,2012b), which are aggregates of microorganisms. Over the course of the experiments, the cells experienced an increase in hydrophobicity in all NP conditions. Therefore, increases in hydrophobicity may limit the cell's surface area for interactions with the colon media and NP solution inside of the model colon, possibly reducing contact between cells and NPs.
Bacterial cells during the NP exposures that presented near-neutral EPM when compared with the control may be attributed to the NPs coating the surface of the cell and therefore changing its EPM (Jiang et al.2009). EPM has been linked to the attachment and stability of microorganisms, with higher absolute values of EPM linked with more stable, or mobile, microorganisms (Elimelech et al.1998; Hermansson, 1999; Marcus et al.2013). This suggests that the microbial community exposed to the NPs is the least stable during the mid-week transition phase, and it is more stable in the initial and homeostatic phases. This indicates there is an increased chance for the community to undergo attachment and form aggregates during less stable conditions. In addition, this study had more near-neutral EPM values associated with the microbial community when compared with previous research with this system that used a microbial community that had more negative values and was donated from a healthy male (Marcus et al.2013). This demonstrates that microbial communities among individuals will also vary in the overall surface charge.
Sugar and protein content of the EPS was measured, because they have been utilized as indicators of cellular conditions (Eboigbodin and Biggs, 2008). Increased amounts of sugar compared with the protein content of the EPS are related to cell aggregation and biofilm formation (Marcotte et al.2007), which may be a mechanism of the cell to limit exposure to NPs inside the model colon; less surface area of the cells may be exposed to the colon media/NP solution. Here, the sugar content relative to the protein increased mid-week, indicating a greater potential for the cells to undergo aggregation during the transition (mid-week) phase. However, the protein portion of the EPS did not show distinct trends; this indicates that this testing method may not be ideal for determining changes within a colon microbial community.
Establishing changes in the distribution of bacterial cell size can give an indication whether NPs are causing phenotypic changes to the microbial community within the model colon; radius measurements indicate that morphological changes are occurring in bacteria width and length. Multiple changes in eukaryotic cellular morphology, which include changes in cell size such as cell rounding, nuclear membrane blebbing, chromatin condensation, and alterations in cytoplasmic organelles, have been associated with cytotoxicity caused by quantum dots and single-walled carbon nanotubes (SWCT) (Shvedova et al.2003; Lovrić et al.2005). Decreases in bacteria cell size have been attributed to stress, with one example being starvation. Stressed cells undergo phenotypic changes in size to increase the likelihood of survival. This includes reductive division to increase cell numbers and increasing the production of hydrophobic molecules that favor aggregation (Morita, 1986; Kjelleberg et al.1987). However, it should be mentioned that while community structure was not determined here with DNA sequencing, changes in the distribution of cell size may be attributed to changes in the microbial community structure (Hahn and Höfle, 1999; Jürgens et al.,1999; Hueso et al.2012). Regardless of this, this measurement gives an indication that the community's size distribution is changing over time in response to the NP exposures.
Biochemical characterization
Butyric acid is largely produced by the microbial breakdown of dietary fiber in the gut; increased levels of butyric acid inside the gut have been linked to protective measures against colorectal cancer such as cell proliferation reduction, decreases in tumor mass, and maintenance of a normal microbial population inside of the intestines (Ames, 1983; Boffa et al.1992; Harris and Ferguson, 1993; McIntyre et al.1993; Topping and Clifton, 2001). A decrease in butyric acid inside the gut not only results in increased susceptibility to inflammation but may also cause a decrease in the barrier function of the gut (Sunkara et al.2011). This indicates that NPs could have a two-fold impact on the intestine by first affecting SCFA production, then leading to systemic circulation of the NPs via an inhibited intestinal barrier.
Under all conditions tested (control and the three individual NP exposures), the pH of the colonic fluid decreased with time. This decrease is a natural phenomenon of the microbial community as it ages and digests the nutrients it is supplied during the course of the experiments (McLauchlan et al.1989; van Herwaarden et al.1999). The presence of the NPs did not result in a significant difference from the control, with all experiments exhibiting the same gradual decline in pH. Therefore, it is likely that the addition of the NPs did not alter the pH, but induced a change in the microbes that may have altered the pH.
pH did not partition into three distinct phases unlike the other data: hydrophobicity, sugar and protein content, and EPM. During the course of the experiments, the colon bioreactor mimicked conditions found inside of a proximal colon with an expected pH range between 5.5 and 7 (Nugent et al.2001) for control days 1–3, which demonstrates that the model colon is stable during this period. Control days 4–5 have a pH below 5.5; therefore, the changes noted in the NP experiments during days 4–5 (homeostatic phase) cannot be exclusively credited to the presence of the NPs. While decreases in a complex media with a neutral pH have been attributed NP dissolution (Bian et al.2011), it is unlikely that this occurred in the model colon due to the similar trends between the control and the three NP trends. Changes in pH may also be caused by acidic metabolites and the available substrates within the intestines (Louis et al.2007). A study in the literature has shown that there are circadian fluctuations within the stomach and intestinal pH (McLauchlan et al.1989; van Herwaarden et al.1999). Since pH did not show significant differences between the control and the NP exposures for 3 out of the 5 experimental days, overall, the decrease in pH within this system is a valid trend (McLauchlan et al.1989; van Herwaarden et al.1999).
Here, conductivity is used as an indirect measurement of the metal ion dissociation from the NPs; and it gives approximations of changes in the ionic strength of the colon effluent (Griffin and Jurinak, 1973). Compared with the control, the increase in day 2 CeO2 conductivity may be attributed to metal ion release from the NP at this specific pH, while the decrease in conductivity for ZnO days 3 and 5 may be attributed to cellular uptake of ions, or ions being bound and made unavailable by the complex colon matrix (Bian et al.2011).
Additional controls with NPs were conducted to simulate the range of pH exposure that may occur, from ingestion of NPs in food and water at a neutral pH, to a low pH in a stomach environment, and, finally, to a pH of 5.5–7 in the proximal intestine. The purpose of these controls was to determine whether changes in pH would affect the physicochemical properties of the NPs, and therefore have the possibility of altering the effects of NPs in the gut environment. As previous work has shown, changes in pH cause alterations in the physical-chemical behavior of NPs such as the surface charge, aggregation rate, and size (Wang and Keller, 2009; Chowdhury et al.20112013). Similar results were noted in the additional NP controls used in this study (data not shown) and may indicate that NP behavior may change on entering the low pH stomach environment, specifically the surface charge and size.
It is essential to note that interactions between NPs and bacteria in the intestines may be dependent on numerous factors: the surface charge of the NPs and bacteria, the chemical composition and surface charge of the digested food, and variability in diet. These factors may ultimately correlate to effects seen in humans on an individual basis. In fact, similar work has demonstrated that exposing common NPs found in food to stomach-like conditions will change their surface chemistry from negative to neutral or positive, causing the NPs to interact with negatively charged mucus proteins in the gastrointestinal tract and, in turn, affecting the transport of NPs within the intestine (McCracken et al.,2013). The purpose of this work was to measure responses of the microbial community during the NP exposures. Based on previous research, it is anticipated that the NPs altered by stomach-like conditions would also cause changes in the gut environment (McCracken et al.2013).
Changes measured in the microbial community when the model colon was dosed with environmentally relevant concentrations of NPs demonstrate that not only will the NPs only minimally affect phenotype but also the particles may also elicit other nonlethal effects. Such effects may include stress to the microbial community. This may imply that other undesired effects on the human gut occur due to the NPs and, therefore, some alterations in overall human health could occur. Other studies have indicated that intestinal exposure to metal NPs has numerous outcomes, such as alterations in the enteroendocrine secretory response of serotonin, and NPs having increased retention time within the gut from entrapment in the intestinal folds, which led to amplified changes to the intestinal physiology (Özel et al.,20132014).
In addition, ambient air particulate matter (<10 acid="" also="" altering="" and="" are="" been="" butyric="" cause="" changes="" colloidal="" community="" composition="" cytokine="" decrease="" enhance="" gut="" have="" i="" in="" inside="" intestine.="" investigated="" ish="" larger="" m="" magnitude="" material="" mice="" microbial="" model="" nbsp="" nps="" observed="" of="" orders="" particles="" permeability="" production="" scfa="" secretion="" shifting="" shown="" specifically="" than="" the="" three="" to="" was="" which="">et al.

2013). This example provides evidence that additional and alternative exposure routes should be considered when designing NP studies. Particulate matter, which can contain particles on the nanoscale, has been shown to have adverse consequences on the gastrointestinal tract and is associated with increased risks for many diseases in which the gut microbiota also play a significant role (Gubéran et al.1992; Kaplan et al.2009; Orazzo et al.2009; Ananthakrishnan et al.2011; Beamish et al.2011; Kish et al.2013). Therefore, another route of exposure to NPs in the gut may be through inhalation of ambient air, in addition to the ingestion exposure route and relevant doses accounted for in this study. The inhalation exposure route demonstrates that atypical exposure scenarios should be considered when designing future NP exposure experiments and this is a relevant pathway for exposure given the current knowledge on ultrafine particle matter and its impacts on health{Bakand, 2012 #638;Grassian, 2007 #637}.
Furthermore, NPs can undergo transformations in the environment or in consumer products such as speciation, dissolution, or aggregation that can alter the NP toxicity, reactivity, and physicochemical properties. These changes are not accurately represented with testing “as-received” particles (Levard et al.20122013; Lowry et al.2012a,2012b; Lombi et al.2013; Reidy et al.2013). Studying NPs in realistic scenarios is of the upmost importance. Here, the concern of a realistic exposure and subsequent transformation was addressed by dosing the sterile colon media with the NPs. The NPs remained in the colon media for the duration of the 5-day-long experiments. Unfortunately, one disadvantage is the difficulty in characterizing NPs after introduction into complex media due to limitations in analytical techniques (Levard et al.2012; Reidy et al.2013). While the NP exposures were designed to mimic realistic scenarios that would involve NP transformation, it was beyond the scope of this particular paper to evaluate the degree of transformation occurring in the colon environment. However, complementary studies have similarly used bacteria in both realistic settings and idealized laboratory studies to determine the effects of NP toxicity on organisms without measuring the fate or transformation of the particles in the systems (Ge et al.2013; Ivask et al.,2013).
Our initial hypothesis, that NPs induce phenotypic changes in a gut microbial community, was affirmed through significant measurable effects seen in the data. Tests that supported that NPs caused changes in the phenotype included hydrophobicity, EPM, sugar content of the EPS, cell size, conductivity, and SFCA (specifically butyric acid) production. Data for cell concentration and the protein content of the EPS demonstrated no significant results. Data were inconclusive for pH. With such a complex biological system, it is very likely that the phenotypic and biochemical changes observed are combinations of responses happening in parallel. The effects seen may be attributed to both changes induced by the NPs and natural phenomena associated with microbial community activity and other metabolic processes in a multifaceted environment such as the gut. Some examples of natural processes that could also influence the phenotypic and biochemical parameters are osmolarity, active metabolites, and electrolyte concentrations (Miller and Wood, 1996; Record et al.1998).
In addition, not only the complexity of the microbiota but also the intricacy of a living colon environment is extremely difficult to predict and monitor. Since the human colon microbiota plays a large and diverse role in overall human health, particularly with immunity and disease development (Guarner and Malagelada, 2003; Wallace et al.2011; Clemente et al.2012), and can vary greatly per individual basis, having an understanding of how the microbiota is affected at the phenotypic level may provide crucial information to better characterize an unhealthy or stressed colon microbial community.

Conclusions

This work highlights the relevance of studying a complex matrix and microbial community in situ rather than individual microbial species in vitro. Diverse analyses, including techniques traditionally used for environmental microbial analysis such as phenotypic measurements, are also needed to further characterize changes in microbial communities. These tests can provide a depth of information that may complement microbial community sequencing data and other traditional colonic enzyme assays. Here, significant changes in hydrophobicity, EPM, sugar content of the EPS, cell size, conductivity, and SCFA demonstrated that representative NPs found in consumer products and water sources with the potential to be ingested can minimally impact the gut microbial community. The techniques used and presented here offer a novel combination of indicators for identifying NP-induced perturbances within the gut microbiota.

Acknowledgments

The authors would like to thank the following people for their help with this work: Brian C. Cruz, Christina E. Gerges, and Jose Valle de Leon. This work was funded by a National Research Service Award Institutional Training Grant (T32 ES018827) and through the UC-CEIN (University of California Center for Environmental Implications of Nanotechnology); this material is based on work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI 0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review, and no official endorsement should be inferred.

Author Disclosure Statement

The authors declare no conflict of interest.

References

K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, and M.L. Forrest (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457.
A. Albanese, and W.C. Chan (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano.5, 5478.
B. Ames (1983). Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases. Science.221, 1256.
A.N. Ananthakrishnan, E.L. McGinley, D.G. Binion, and K. Saeian (2011). Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: An ecologic analysis. Inflamm. Bowel Dis. 17, 1138.
J.H.A. Apajalahti, L.K. Särkilahti, B.R.E. Mäki, J.P. Heikkinen, P.H. Nurminen, and W.E. Holben (1998). Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. Appl. Environ. Microbiol. 64, 4084.
F. Armougom, M. Henry, B. Vialettes, D. Raccah, and D. Raoult (2009). Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PloS One. 4, e7125.
M. Auffan, J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla, A. Botta, M.R. Wiesner, and J.-Y. Bottero (2009). CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitroNanotoxicology. 3, 161.
F. Bäckhed, H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, C.F. Semenkovich, and J.I. Gordon (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718.
L.A. Beamish, A.R. Osornio-Vargas, and E. Wine (2011). Air pollution: An environmental factor contributing to intestinal disease. J. Crohn's Colitis. 5, 279.
S.-W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, and V.H. Grassian (2011). Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid.Langmuir. 27, 6059.
L.C. Boffa, J.R. Lupton, M.R. Mariani, M. Ceppi, H.L. Newmark, A. Scalmati, and M. Lipkin (1992). Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary Fiber (wheat bran) in rats. Cancer Res. 52, 5906.
C.H. Bolster, K.L. Cook, I.M. Marcus, B.Z. Haznedaroglu, and S.L. Walker (2010). Correlating transport behavior with cell properties for eight porcine Escherichia coli isolates. Environ. Sci. Technol. 44, 5008.
C.H. Bolster, B.Z. Haznedaroglu, and S.L. Walker (2009). Diversity in cell properties and transport behavior among 12 different environmental Escherichia coli isolates. J. Environ. Qual. 38, 465.
Y.-S. Chen, Y.-C. Hung, I. Liau, and G.S. Huang (2009). Assessment of the in vivo toxicity of gold nanoparticles.Nanoscale Res. Lett. 4, 858.
I. Chowdhury, Y. Hong, R.J. Honda, and S.L. Walker (2011). Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flowrate. J. Coll. Interface Sci. 360, 548.
I. Chowdhury, S.L. Walker, and S.E. Mylon (2013). Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environ. Sci. Processes Impacts. 15, 275.
Jose C. Clemente, Luke K. Ursell, Laura W. Parfrey, and R. Knight (2012). The impact of the gut microbiota on human health: An integrative view. Cell148, 1258.
M.D. Collins, and G.R. Gibson (1999). Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69, 1052s.
J.H. Cummings (1984). Microbial digestion of complex carbohydrates in man. Proc. Nutr. Soc. 43, 35.
L.A. David, C.F. Maurice, R.N. Carmody, D.B. Gootenberg, J.E. Button, B.E. Wolfe, A.V. Ling, A.S. Devlin, Y. Varma, M.A. Fischbach, S.B. Biddinger, R.J. Dutton and P.J. Turnbaugh (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559.
K.E. Eboigbodin, and C.A. Biggs (2008). Characterization of the extracellular polymeric substances produced byEscherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules. 9, 686.
P.B. Eckburg, E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson and D.A. Relman (2005). Diversity of the human intestinal microbial flora. Science308, 1635.
M. Elimelech, X. Jia, J. Gregory, and R. Williams (1998). Particle Deposition & Aggregation: Measurement, Modelling and Simulation. Woburn, MA: Butterworth-Heinemann.
D.N. Frank, C.E. Robertson, C.M. Hamm, Z. Kpadeh, T. Zhang, H. Chen, W. Zhu, R.B. Sartor, E.C. Boedeker, N. Harpaz, N.R. Pace, and E. Li (2011). Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179.
D.N. Frank, A.L. St. Amand, R.A. Feldman, E.C. Boedeker, N. Harpaz, and N.R. Pace (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104, 13780.
Y. Ge, J.H. Priester, L.C. Van De Werfhorst, J.P. Schimel, and P.A. Holden (2013). Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 47, 14411.
Y. Ge, J.P. Schimel, and P.A. Holden (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45, 1659.
F. Gottschalk, T. Sonderer, R.W. Scholz, and B. Nowack (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol. 43, 9216.
B.A. Griffin, and J.J. Jurinak (1973). Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Sci. 116, 26.
F. Guarner, and J.-R. Malagelada (2003). Gut flora in health and disease. Lancet361, 512.
E. Gubéran, M. Usel, L. Raymond, J. Bolay, G. Fioretta, and J. Puissant (1992). Increased risk for lung cancer and for cancer of the gastrointestinal tract among Geneva professional drivers. Br. J. Ind. Med. 49, 337.
M.W. Hahn, and M.G. Höfle (1999). Flagellate predation on a bacterial model community: Interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65, 4863.
P.J. Harris, and L.R. Ferguson (1993). Dietary fibre: Its composition and role in protection against colorectal cancer. Mutat. Res. 290, 97.
M. Hermansson (1999). The DLVO theory in microbial adhesion. Coll. Surfaces B Biointerfaces. 14, 105.
L.V. Hooper, T. Midtvedt, and J.I. Gordon (2002). How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann. Rev. Nutr. 22, 283.
Elaine Y. Hsiao, Sara W. McBride, S. Hsien, G. Sharon, Embriette R. Hyde, T. McCue, Julian A. Codelli, J. Chow, Sarah E. Reisman, Joseph F. Petrosino, Paul H. Patterson, and Sarkis K. Mazmanian (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell155, 1451.
S. Hueso, C. García, and T. Hernández (2012). Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem. 50, 167.
A. Ivask, A. ElBadawy, C. Kaweeteerawat, D. Boren, H. Fischer, Z. Ji, C.H. Chang, R. Liu, T. Tolaymat, D. Telesca, J.I. Zink, Y. Cohen, P.A. Holden, and H.A. Godwin (2013). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 8, 374.
J. Jiang, G. Oberdörster, and P. Biswas (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77.
R. Jiménez-Vera, O. Monroy, A. Corona-Cruz, and M. García-Garibay (2008). Construction of a model of the human proximal colon. World J. Microbiol. Biotechnol. 24, 2767.
K. Jürgens, J. Pernthaler, S. Schalla, and R. Amann (1999). Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65, 1241.
T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki (2004). Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J. Cosmet. Sci. 55, 219.
G.G. Kaplan, E. Dixon, R. Panaccione, A. Fong, L. Chen, M. Szyszkowicz, A. Wheeler, A. MacLean, W.D. Buie, T. Leung, S.J. Heitman, and P.J. Villeneuve (2009). Effect of ambient air pollution on the incidence of appendicitis.CMAJ. 181, 591.
A. Keller, S. McFerran, A. Lazareva, and S. Suh (2013). Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1.
A. Keller, W. Vosti, H. Wang, and A. Lazareva (2014). Release of engineered nanomaterials from personal care products throughout their life cycle. J. Nanopart. Res. 16, 1.
A.A. Keller, and A. Lazareva (2013). Predicted releases of engineered nanomaterials: From global to regional to local. Environ. Sci. Technol. Lett. 1, 65.
A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, and Z. Ji (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962.
D. Kelly, J.I. Campbell, T.P. King, G. Grant, E.A. Jansson, A.G. Coutts, S. Pettersson, and S. Conway (2003). Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104.
N. Khlebtsov, and L. Dykman (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647.
I.-S. Kim, M. Baek, and S.-J. Choi (2010). Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol. 10, 3453.
M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, and K. Hristovski (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757.
L. Kish, N. Hotte, G.G. Kaplan, R. Vincent, R. Tso, M. Gänzle, K.P. Rioux, A. Thiesen, H.W. Barkema, and E. Wine (2013). Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PloS One. 8, e62220.
S. Kjelleberg, M. Hermansson, P. Marden, and G.W. Jones (1987). The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Ann. Rev. Microbiol. 41, 25.
B. Koeneman, Y. Zhang, P. Westerhoff, Y. Chen, J. Crittenden, and D. Capco (2010). Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol. Toxicol. 26, 225.
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai (2000). Nanotube molecular wires as chemical sensors. Science. 287, 622.
B.R. Kulasekara, C. Kamischke, H.D. Kulasekara, M. Christen, P.A. Wiggins, and S.I. Miller (2013). c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. Elife. 2, e01402.
P. Lepage, R. Häsler, M.E. Spehlmann, A. Rehman, A. Zvirbliene, A. Begun, S. Ott, L. Kupcinskas, J. Doré, A. Raedler, and S. Schreiber (2011). Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis. Gastroenterology. 141, 227.
C. Levard, E.M. Hotze, B.P. Colman, A.L. Dale, L. Truong, X.Y. Yang, A.J. Bone, G.E. Brown, R.L. Tanguay, R.T. Di Giulio, E.S. Bernhardt, J.N. Meyer, M.R. Wiesner, and G.V. Lowry (2013). Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ. Sci. Technol. 47, 13440.
C. Levard, E.M. Hotze, G.V. Lowry, and G.E. Brown (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 46, 6900.
R.E. Ley, F. Bäckhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight, and J.I. Gordon (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S. A. 102, 11070.
R.E. Ley, P.J. Turnbaugh, S. Klein, and J.I. Gordon (2006). Microbial ecology: Human gut microbes associated with obesity. Nature. 444, 1022.
L.K. Limbach, Y. Li, R.N. Grass, T.J. Brunner, M.A. Hintermann, M. Muller, D. Gunther, and W.J. Stark (2005). Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370.
E. Lombi, E. Donner, S. Taheri, E. Tavakkoli, Jämting, Å.K., S. McClure, R. Naidu, B.W. Miller, K.G. Scheckel, and K. Vasilev (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ. Pollut. 176, 193.
M.C.E. Lomer, R.P.H. Thompson, J. Commisso, C.L. Keen, and J.J. Powell (2000). Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst. 125, 2339.
R.Q. Long, and R.T. Yang (2001). Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc.123, 2058.
M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, J.R. Peralta-Videa, and J.L. Gardea-Torresdey (2010). X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58, 3689.
P. Louis, K.P. Scott, S.H. Duncan, and H.J. Flint (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 102, 1197.
J. Lovrić, H. Bazzi, Y. Cuie, G.A. Fortin, F. Winnik, and D. Maysinger (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377.
G.V. Lowry, B.P. Espinasse, A.R. Badireddy, C.J. Richardson, B.C. Reinsch, L.D. Bryant, A.J. Bone, A. Deonarine, S. Chae, M. Therezien, B.P. Colman, H. Hsu-Kim, E.S. Bernhardt, C.W. Matson, and M.R. Wiesner (2012a). Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 46, 7027.
G.V. Lowry, K.B. Gregory, S.C. Apte, and J.R. Lead (2012b). Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893.
A.J.H. Maathuis, E.G. van den Heuvel, M.H.C. Schoterman, and K. Venema (2012). Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutr. 142, 1205.
C. Manichanh, L. Rigottier-Gois, E. Bonnaud, K. Gloux, E. Pelletier, L. Frangeul, R. Nalin, C. Jarrin, P. Chardon, P. Marteau, J. Roca, and J. Dore (2006). Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 55, 205.
L. Marcotte, G. Kegelaer, C. Sandt, J. Barbeau, and M. Lafleur (2007). An alternative infrared spectroscopy assay for the quantification of polysaccharides in bacterial samples. Anal. Biochem. 361, 7.
I.M. Marcus, C.H. Bolster, K.L. Cook, S.R. Opot, and S.L. Walker (2012a). Impact of growth conditions on transport behavior of E. coliJ. Environ. Monit. 14, 984.
I.M. Marcus, M. Herzberg, S.L. Walker, and V. Freger (2012b). Pseudomonas aeruginosa attachment on QCM-D sensors: The role of cell and surface hydrophobicities. Langmuir. 28, 6396.
I.M. Marcus, H.A. Wilder, S.J. Quazi, and S.L. Walker (2013). Linking microbial community structure to function in representative simulated systems. Appl. Environ. Microbiol. 79, 2552.
C.R. Martin, and P. Kohli (2003). The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2, 29.
T. Matsuki, K. Watanabe, J. Fujimoto, T. Takada, and R. Tanaka (2004). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 70, 7220.
C. McCracken, A. Zane, D.A. Knight, P.K. Dutta, and W.J. Waldman (2013). Minimal intestinal epithelial cell toxicity in response to short- and long-term food-relevant inorganic nanoparticle exposure. Chem. Res. Toxicol.26, 1514.
A. McIntyre, P.R. Gibson, and G.P. Young (1993). Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 34, 386.
G. McLauchlan, G.M. Fullarton, G.P. Crean, and K.E. McColl (1989). Comparison of gastric body and antral pH: A 24 hour ambulatory study in healthy volunteers. Gut. 30, 573.
K. Miller, and J. Wood (1996). Osmosadapation by rhizosphere bacteria. Ann. Rev. Microbiol. 50, 101.
M. Minekus, M. Smeets-Peeters, A. Bernalier, S. Marol-Bonnin, R. Havenaar, P. Marteau, M. Alric, G. Fonty, and J.H.J. Huis in't Veld (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 53, 108.
S. Mondot, S. Kang, J.P. Furet, D. Aguirre de Carcer, C. McSweeney, M. Morrison, P. Marteau, J. Doré, and M. Leclerc (2011). Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm. Bowel Dis. 17, 185.
R. Morita (1986). Autoecological Studies and Marine Ecosystems. New York: Wiley & Sons.
B. Nowack, J.F. Ranville, S. Diamond, J.A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A.A. Koelmans, and S.J. Klaine (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31, 50.
S.G. Nugent, D. Kumar, D.S. Rampton, and D.F. Evans (2001). Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 48, 571.
F. Orazzo, L. Nespoli, K. Ito, D. Tassinari, D. Giardina, M. Funis, A. Cecchi, C. Trapani, G. Forgeschi, M. Vignini, L. Nosetti, S. Pigna, and A. Zanobetti (2009). Air pollution, aeroallergens, and emergency room visits for acute respiratory diseases and gastroenteric disorders among young children in six italian cities. Environ. Health Perspect. 117, 1780.
R.E. Özel, A. Hayat, K.N. Wallace, and S. Andreescu (2013). Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Adv. 3, 15298.
R.E. Özel, K.N. Wallace, and S. Andreescu (2014). Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish. Environ. Sci. Nano. 1, 27.
D.A. Pelletier, A.K. Suresh, G.A. Holton, C.K. McKeown, W. Wang, B. Gu, N.P. Mortensen, D.P. Allison, D.C. Joy, M.R. Allison, S.D. Brown, T.J. Phelps, and M.J. Doktycz (2010). Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 76, 7981.
J.J. Powell, N. Faria, E. Thomas-McKay, and L.C. Pele (2010). Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34, J226.
M. Rajilić-Stojanović, A. Maathuis, H.G.H Heilig.J., K. Venema, W.M. de Vos, and H. Smidt (2010). Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis.Microbiology. 156, 3270.
M.T. Record Jr, E.S. Courtenay, D.S. Cayley, and H.J. Guttman (1998). Responses of E. coli to osmotic stress: Large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23, 143.
B. Reidy, A. Haase, A. Luch, K. Dawson, and I. Lynch (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials. 6, 2295.
A. Schäfer, P. Ustohal, H. Harms, F. Stauffer, T. Dracos, and A.J.B. Zehnder (1998). Transport of bacteria in unsaturated porous media. J. Contam. Hydrol. 33, 149.
A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, and P. Baron (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health Part A. 66, 1909.
L.T. Sunkara, M. Achanta, N.B. Schreiber, Y.R. Bommineni, G. Dai, W. Jiang, S. Lamont, H.S. Lillehoj, A. Beker, and R.G. Teeter (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PloS One. 6, e27225.
S.S. Tazehkand, S. Torkzaban, S.A. Bradford, and S.L. Walker (2008). Cell preparation methods influenceEscherichia coli D21g surface chemistry and transport in saturated sand. J. Environ. Qual. 37, 2108.
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, and A.G. Rinzler (1996). Crystalline ropes of metallic carbon nanotubes. Science. 273, 483.
J. Thévenot, L. Etienne-Mesmin, S. Denis, S. Chalancon, M. Alric, V. Livrelli, and S. Blanquet-Diot (2013). Enterohemorrhagic Escherichia coli O157:H7 survival in an in vitro model of the human large intestine and interactions with probiotic yeasts and resident microbiota. Appl. Environ. Microbiol. 79, 1058.
B.J.R. Thio, D. Zhou, and A.A. Keller (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater. 189, 556.
D.L. Topping, and P.M. Clifton (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031.
P. Van den Abbeele, C. Grootaert, M. Marzorati, S. Possemiers, W. Verstraete, P. Gérard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, E. Zoetendal, M. Kleerebezem, H. Smidt, and T. Van de Wiele (2010). Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and clostridium cluster IX. Appl. Environ. Microbiol. 76, 5237.
van der M.J. Werf, and K. Venema (2000). Bifidobacteria: genetic modification and the study of their role in the colon. J. Agric. Food Chem. 49, 378.
A. van Herwaarden, M. Samsom, and A.J.P Smout.M. (1999). 24-h Recording of Intragastric pH: Technical aspects and clinical relevance. Scand. J. Gastroenterol. 34, 9.
K. Venema, M.H.M van Nuenen.C., E.G. van den Heuvel, W. Pool, and J.M.B van der Vossen.M. (2003). The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microb. Ecol. Health Dis. 15, 94.
T.C. Wallace, F. Guarner, K. Madsen, M.D. Cabana, G. Gibson, E. Hentges, and M.E. Sanders (2011). Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69, 392.
P. Wang, and A.A. Keller (2009). Natural and engineered nano and colloidal transport: Role of zeta potential in prediction of particle deposition. Langmuir. 25, 6856.
A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. von Goetz (2012). Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242.
R. Wolf, H. Matz, E. Orion, and J. Lipozencić (2003). Sunscreens—the ultimate cosmetic. Acta Dermatovenerol. Croat. 11, 158.
J.M.W. Wong, R. de Souza, C.W.C. Kendall, A. Emam, and D.J.A. Jenkins (2006). Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235.
O. Yamamoto (2001). Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643.
Y. Yang, and P. Westerhoff (2014). Presence in, and release of, nanomaterials from consumer products. In D.G. Capco, and Y. Chen, Eds., Nanomaterial. Netherlands: Springer, pp.117.
O. Zeyons, A. Thill, F. Chauvat, N. Menguy, C. Cassier-Chauvat, C. Oréar, J. Daraspe, M. Auffan, J. Rose, and O. Spalla (2009). Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and synechocystis.Nanotoxicology. 3, 284.

Supplementary Material

Users who read this article also read

No Access
Nichola KinsingerRyan HondaValerie KeeneSharon L. Walker
Environmental Engineering Science. April 2015: 292-300.
Abstract | Full Text PDF or HTML | Reprints | Permissions
No Access
Heather O'Neal StanclKiril HristovskiPaul Westerhoff
Environmental Engineering Science. April 2015, ahead of print.
Abstract | Full Text PDF or HTML | Reprints/Permissions
No Access
Maren Roman
Industrial Biotechnology. February 2015: 25-33.
Abstract | Full Text PDF or HTML | Reprints | Permissions
No Access
Leo Galland
Journal of Medicinal Food. December 2014: 1261-1272.
Abstract | Full Text PDF or HTML | Reprints | Permissions
No Access
Daniel P. McInnisDiogo BolsterPatricia A. Maurice
Environmental Engineering Science. January 2015: 4-13.
Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions
No Access
Massimo PignaAntonio Giandonato CaporaleLucia CavalcaAlessia SommellaA. Violante
Environmental Engineering Science. May 2015, ahead of print.
Abstract | Full Text PDF or HTML | Reprints/Permissions

► Potrebbe interessare anche: