sabato 23 maggio 2015

Ingegnerizzazione del Clima, il cibo e contaminazione dei nostri Alimenti...

Ingegnerizzazione del Clima, il cibo  e 

contaminazione dei nostri Alimenti...


Dane Wigington

geoengineeringwatch

trd Sa Defenza



Numerosi brevetti di neoingegneria climatica richiedono di essere spruzzati nei cieli del pianeta per la diffusione di nanoparticelle di metalli pesanti. 
Le nanoparticelle sono incomprensibilmente piccole (un miliardesimo di metro) e sono quindi biodisponibili in tutti i sensi. 

  • Particelle di qualsiasi materiale di questa grandezza sono molto pericolose per il sistema respiratorio umano. 
  • Se i materiali in questione sono metalli pesanti come l'alluminio e bario, l'equazione è molto peggiore. 


  • Cosa succede quando l'intera superficie della Terra sarà  sprofondata in uno strato estremamente pericoloso di nanoparticelle di metalli pesanti gettati dai cieli sopra noi? 
  • Che cosa succede quando questo processo continuerà per settimane, mesi, anni e persino decenni? 
  • Una volta che lo trovi nelle precipitazioni, nei terreni e corsi d'acqua saturi di questo tipo di contaminazione, e viene poi assorbito da tutti gli organismi viventi. Ciò significa che ogni nostro respiro, e in tutto quello che mangiamo (anche biologico) sono stati contaminati. 

La maggior parte del sistema immunitario umano inizia nell'intestino, durante la digestione. 
Cosa succede quando il nostro approvvigionamento alimentare è irrimediabilmente contaminato con materiali in questione? 
Questo è il caso che siamo tutti parte dell'esperimento così tutti  scopriremo ben presto quanto e come si deteriora la nostra salute. 
L'articolo qui sotto non affronta direttamente il tema della ricaduta della geoingegneria (che matematicamente  fonte di contaminazione da nanoparticelle combinate), ma questo è irrilevante. 
Non importa quale sia la fonte di contaminazione da nanoparticelle, perché l'effetto è lo stesso.



Nanoparticelle negli alimenti e nell'acqua trovate nell'intestino alterano il microbioma

nanoparticelle di ossido di metallo

Fonte: Activist post , articolo Heather Callaghan

Nanotecnologia - cioè particelle di ossido di metallo * come il biossido di titanio - sono sempre più utilizzati nella catena alimentare commerciale, nei beni di consumo, nella cura del corpo e nel trattamento delle acque.

Il microbioma intestinale è l'argomento più interessante di cui parla oggi la scienza, perché non ancora riconosciuto dalla comunità medica l'importanza della salute dell'intestino del cervello umano, degli ormoni, dell'immunità, della salute mentale e altro ancora. Il mantenimento di un intestino sano ha a che fare con il benessere ottimale.

Purtroppo, tante sostanze introdotte nella catena alimentare senza testarle, ne essere ispezionate, o regolamentate o anche cortesemente  dichiarate la cortesia di un'etichetta chiara. I consumatori non hanno idea di quello che stanno assimilando o come andrà a incidere sulla loro salute a lungo termine.

Eppure, un documento fresco di stampa di  Environmental Engineering Science mostra la ragione per cui questa pratica deve essere prontamente verificata.

Si potrebbe desiderare di copiare e incollare ""Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota "Il documento Word, E una Disposizione in Lettura Gratuita Fino al 1 giugno  [sa defenza lo ha copiato per voi e messo a fine articolo] .

I ricercatori hanno scoperto che le nanoparticelle hanno condotto a molteplici differenze misurabili, nella comunità microbica normale,  nell'intestino umano, e scrivono:

La comprensione delle interazioni tra NP e batteri in un modello di colon sperimentale indicano i potenziali impatti da esposizione alle NP sul sistema intestinale, e la salute umana, in generale. 
Salute e microbioma umano hanno importanti implicazioni per la salute individuale in generale.
Nel complesso, le nanoparticelle hanno causato letali modifiche significative al fenotipo della comunità microbica, che possono riflettersi su correlati effetti sulla salute in generale.

Gli autori dell'articolo hanno introdotto singolarmente tre differenti nanoparticelle - ossido di zinco, biossido di cerio, biossido di titanio e - comunemente utilizzati in prodotti come dentifrici, cosmetici, creme solari, rivestimenti e vernici, in un modello di colon umano. Il modello del colon imita il normale ambiente intestinale e contiene i microrganismi in genere presenti nel microbioma umano. Anche se si sono fermati poco prima di incolpare le nanoparticelle per gravi danni arrecati al colon (ma è stato solo accennato), hanno dimostrano che l'esposizione alle nanoparticelle ha creato una visibile significativa differenza di come funzioni il microbioma.

I ricercatori hanno descritto cambiamenti in entrambe le caratteristiche specifiche della comunità microbica e del microambiente intestinale dopo l'esposizione alle nanoparticelle. Ad esempio, fanno notare la passata e attuale ricerca e il danno alla membrana delle cellule eucariotiche, gli effetti negativi in ​​Escherichia coli, che attraversa il rivestimento epiteliale, e ceppo specifici, gli effetti antimicrobici e molto altro ancora. Il loro lavoro è anche una grande raccolta di precedenti ricerca sulle nanotecnologie.

Questo dimostra come tali studi avrebbero dovuto essere presi in considerazione prima che queste sostanze fossero autorizzate nel trattamento dentro sostanze per uso cosmetico o altro uso sul tratto intestinale.

La ricerca precedente ha anche dimostrato gli effetti cancerogeni delle nanoparticelle nel tratto intestinale. Bisogna evitare  di nutrirsi con cibo spazzatura confezionato, caramelle e nella cura del nostro corpo con prodotti che contengono agenti sbiancanti (come la gomma, Mentos e crema solari commerciali).
Tuttavia, ci sono altri tipi di nanoparticelle nei beni di consumo che passano quasi inosservati, un modo per evitarli è di ridurre la dipendenza dai prodotti commerciali, potrebbe essere un modo per migliorare la microbiota intestinale.

Altri articoli di ricerca cercano di influenzare il pubblico portando a loro conoscenza il 'nanotech' che è già presente nel loro cibo, utilizzando etichette vergognosamente assurde come "technology rejecters" per coloro che preferiscono pagare di più per evitare le nanoparticelle alimentari. Vogliono capire che cosa ci vuole per ottenere l'acquiescenza, anche se nessuno ha mai chiesto se questi materiali siano lavati.

Segui il tuo istinto finché ti è ancora possibile!

* nell'immagine sopra son raffigurate le particelle da dimensioni di nanometri - circa 100.000 volte più piccole rispetto al diametro di un capello umano. - 


See more at: http://www.naturalblaze.com/2014/12/injectable-3d-vaccines-with.html#sthash.uaYixADa.dpuf



Segue l'articolo di riferimento che abbiamo copiato per voi

Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota

To cite this article:
Taylor Alicia A., Marcus Ian M., Guysi Risa L., and Walker Sharon L.. Environmental Engineering Science. -Not available-, ahead of print. doi:10.1089/ees.2014.0518.
Online Ahead of Print: April 24, 2015

Author information

Alicia A. TaylorIan M. Marcus,** Risa L. Guysi, and Sharon L. Walker*,
Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California.
**Present address: Faculté de medicine, Université Paris Descartes Sorbonne Paris Cité, Paris, France.
Present address: Carollo Engineers, 7888 Mission Grove Parkway South, Ste 100, Riverside, California.
*Member of AEESP.
Corresponding author: Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521. Phone: 951-827-6094; Fax: 951-827-5696; E-mail: 
Received: November 25, 2014
Accepted in revised form: March 12, 2015

ABSTRACT

Nanoparticles (NPs) are becoming prevalent in consumer goods, including foods and cosmetics. Understanding the interactions between NPs and bacteria in an engineered model colon can indicate potential impacts of NP exposure on the gut, and therefore overall human health. Human microbiome health has important implications to overall individual health. This work aims at quantifying the phenotypic response to NP ingestion of a model microbial community within a model colon. Three NPs at environmentally relevant concentrations (0.01 μg/L ZnO, 0.01 μg/L CeO2, and 3 mg/L TiO2) were individually introduced into a model colon to identify the subsequent impact on the gut microbial community. Results indicate that NPs cause the microbial community's phenotype to partition into three distinct phases: initial conditions, a transition period, and a homeostatic phase, with the NP-exposed community displaying significant differences (p<0 .05="" acid="" affected="" and="" by="" changes="" community="" content="" electrophoretic="" extracellular="" fatty="" from="" hydrophobicity="" in="" including="" indicate="" mobility="" multiple="" notably="" nps.="" of="" phenotypes="" phenotypic="" polymeric="" production="" s="" short-chain="" stability="" sub="" substance="" sugar="" the="" tio="" traits.="" unexposed="" were="" which="">2

 NPs led to extended phenotypic transformations for hydrophobicity when compared with the other NPs, likely due to its lack of dissociation and greater stability. Overall, the NPs caused nonlethal, significant changes to the microbial community's phenotype, which may be related to overall health effects.

Introduction

Nanotechnology offers many positive benefits to human health, such as more efficient drug delivery, sensor development for toxic substances detection, and medical diagnostic techniques (Thess et al.1996; Kong et al.2000; Long and Yang, 2001; Martin and Kohli, 2003); however, the increasing popularity of nanotechnology may lead to a rise in potential accidental exposures through ingestion or via environmental release of nanoparticles (NPs). It is estimated that 15,600 metric tons year−1 of TiO2 nanomaterials, 3,700 metric tons year−1 of ZnO nanomaterials, and 300 metric tons year−1 of CeO2 nanomaterials enter water systems with the majority of these NPs discharged from wastewater treatment plants (Keller and Lazareva, 2013; Keller et al.2013).
TiO2 NPs are used daily by consumers with products such as toothpastes, cosmetics, and sunscreens (Wolf et al.,2003; Kaida et al.2004) and may easily be ingested. CeO2 NPs are introduced into water resources through the disposal of coatings, pigments, and paints (Keller et al.2013). Much like CeO2 and TiO2, ZnO NPs can enter bodies of water not only through discarded coatings, pigments, and paints but also from the disposal of cosmetics (Keller and Lazareva, 2013; Keller et al.2013). These three NPs were chosen based on their potential for human exposures through their widespread use in many consumer products, foods, and because of their potential to be in treated drinking water (Wolf et al.2003; Kaida et al.2004; Limbach et al.2005; Auffan et al.2009; Gottschalk et al.,2009; Kiser et al.2009; Weir et al.2012; Keller and Lazareva, 2013; Keller et al.20132014).
NPs selected in this study have been reported to have toxic, nonlethal effects on organisms. Recent work has shown that TiO2 NPs can cross the epithelial lining in an intestinal model cell line via transcytosis (Koeneman et al.2010). While TiO2 did not cause cell death, there are implications of other nonlethal effects to the cells. CeO2 NPs have caused negative effects in Escherichia coli, reduction in plant germination, and have caused membrane damage in eukaryotic cells (Zeyons et al.2009; Kim et al.2010; López-Moreno et al.2010). In addition, research has also shown the CeO2 NPs may have strain specific antimicrobial effects (Pelletier et al.2010). CeO2 particles are found in personal care products, and humans may also risk exposure to CeO2 NPs through sunscreens and cosmetics (Limbachet al.2005; Auffan et al.2009). CeO2 is also one of the most commonly utilized NPs, and it is used in a wide variety of applications. The disposal of these products into water sources is a potential route of exposure for humans. ZnO NPs exhibit toxicity to eukaryotic cells, decreasing cell viability and proliferation, and disrupting membrane integrity (Kim et al.2010). ZnO NPs have also shown antimicrobial effects on bacteria; these effects are size and concentration dependent, as well as species specific (Yamamoto, 2001). However, it is important to note that many in vivo studies with higher-level organisms often give mixed results on toxicity (Aillon et al.2009; Chen et al.2009; Khlebtsov and Dykman, 2011). Therefore, these three NPs were chosen to determine the potential toxicity on the gut microbiota, which is likely to occur through exposure routes such as accidental dosing and ingestion.
In vitro function of gut environments has previously been characterized by monitoring enzymatic activity (Van den Abbeele et al.2010; Maathuis et al.2012), short-chain fatty acid (SCFA) production (Jiménez-Vera et al.2008; Van den Abbeele et al.2010; Maathuis et al.2012; Thévenot et al.2013), and by determining microbial community genotype (van der Werf and Venema, 2000; Rajilić-Stojanović et al.2010; Van den Abbeele et al.2010; Maathuis et al.2012). Gut organisms play an important role with indispensible functions to the human host such as vitamin production, digestion, and immune system activity (Cummings, 1984; Hooper et al.2002; Kelly et al.2003).
The role of the gut microbiota is so prominent in human health that researchers have found links between gut microbes and numerous diseases (Bäckhed et al.2004; Ley et al.20052006; Manichanh et al.2006; Frank et al.,20072011; Lepage et al.2011; Mondot et al.2011; Hsiao et al.2013). In fact, changes in diet alone can cause rapid transformations in the activity and structure of the gut microbiota (David et al.2014), indicating that the microbiota is sensitive with a quick reaction time to changes in the human intestines. This work highlights the importance of studying the effects of environmental contaminants on the gut microbiota.
Understanding the gut microbiome and its importance to human health with techniques such as molecular methods (Collins and Gibson, 1999; Matsuki et al.2004; Eckburg et al.2005; Armougom et al.2009) will give rise to more treatment and disease prevention options. However, more information is needed than just sequencing data to fully understand the complex and dynamic function of the gut microbiota. Monitoring changes in the community's characteristics over time, such as the physical-chemical features, may provide a more complete representation of the gut's function and role in human health. Here, phenotypic characterization techniques based on colloidal (e.g., cell) transport experiments provide valuable insights that may not typically be measured with a microbiota study. To date, this is the first paper analyzing the effects of environmentally relevant concentrations of NPs and their effects on the physical-chemical components of the gut community.
Published work with this model colon design has shown that microbial communities in the gut, wastewater, and groundwater can undergo significant phenotypic and genotypic changes when a perturbance is introduced, such as a pathogen (Marcus et al.2013). We hypothesize that as compared with pathogen-induced disturbances, the model colon's microbial community will undergo similar phenotypic changes when the colon is dosed with environmentally relevant concentrations of three NPs: TiO2, CeO2, and ZnO.

Experimental Protocol

Microbial community and model colon
Experimental parameters measured in this work were identical to Marcus et al. (2013) as was the preparation of the microbial community, the microbial medium representing digested food entering the large intestine (Minekus et al.,1999), and the in vitro model colon reactor (Jiménez-Vera et al.2008; Marcus et al.2013). The only exception was that the microbial community was donated by and developed (Apajalahti et al.1998) from a healthy 26-year-old female volunteer who had not received antibiotics in more than 8 months. Briefly, frozen stocks of the microbial community were stored at −80°C and each week a stock community was thawed, inoculated into a 200 mL flask containing colon media (Minekus et al.1999), and incubated for 24 hrs before being pumped into the dialysis tube inside the custom colon reactor.
A human colon was replicated by using a custom-built reactor (Marcus et al.2013), which represented conditions inside a proximal colon (Nugent et al.2001). The model colon ran for consecutive 5-day-long experiments. Colon effluent, or waste, was collected thrice a day during feedings for characterization experiments. The model colon was run for a minimum of two runs (two 5-day-long experiments) per experimental condition to ensure reproducible data. Additional details and images of the model colon set-up are located in the supplementary information (SI) inSupplementary Fig. S1.
NP selection
Zinc oxide (ZnO; Meliorum Technologies), titanium dioxide (TiO2; Evonik Degussa Corporation), and cerium dioxide (CeO2; Meliorum Technologies) NPs were selected for this work. They have previously been characterized in another study with the primary particle size for each NP reported as 10, 21, and 10 nm, respectively (Keller et al.2010). Additional characteristics are listed in the Keller et al. study for the NPs, such as phase and structure, surface area, isoelectric point, purity, and electrophoretic mobility (EPM). Additional studies have also been conducted using these identical NPs to study their transport, aggregation, and effects on soil microbial communities (Ge et al.2011; Thio et al.2011; Chowdhury et al.2013).
Environmentally relevant NP concentrations were chosen to emulate human exposures to NPs through ingestion of both food and drinking water at 0.01 μg/L ZnO NP, 0.01 μg/L CeO2 NP, and 3 mg/L TiO2 NP (Gottschalk et al.2009; Kiser et al.20092013; Weir et al.2012; Keller and Lazareva, 2013). Recent work has also indicated that adults in the USA ingest 5 mg TiO2 per day, half of which is in the nano-size range (Lomer et al.2000; Powell et al.2010). Exposure routes and reliable dosing information of NPs that are embedded in solid matrices are difficult to predict, and this is often a limitation of analytical techniques (Nowack et al.2012; Yang and Westerhoff, 2014). The exposure levels used in this study were predominately selected from literature values that give predictions on amount of NPs in water and food sources (Gottschalk et al.2009; Kiser et al.2009; Weir et al.2012; Keller and Lazareva, 2013; Keller et al.2013).
NPs were added in bulk to the colon media before autoclaving and without alteration to achieve the concentrations mentioned earlier; this eliminated any contamination issues that may have occurred by adding NPs to the colon reactor independently of the food source. The addition of the NPs to the sterile food source also provided a realistic exposure scenario that can provide the possibility for representative NP transformations (Albanese and Chan, 2011; Levard et al.20122013; Lowry et al.2012a2012b; Lombi et al.2013; Reidy et al.2013). During the week-long experiments, the sterile colon media containing the NPs was continually stirred, and thrice a day, 100 mL was added to the model colon by pumping the sterile colon media into the reactor. During each feeding, 100 mL of colon effluent was also removed for characterization experiments.
As a control, the model colon was run without NPs for two runs (two 5-day-long experiments) to determine the gut microbiota phenotype in the absence of NPs. All NP experiments were run for a minimum of two runs (two 5-day-long experiments) to ensure reproducibility, and all colon experiments were run under dark conditions to eliminate light effects. Additional controls were conducted to test the EPM and hydrophobicity of the NPs as a function of the extreme range of pH in the gastrointestinal tract. The purpose of this was to account for possible transformations of NPs and their subsequent changes in physicochemical properties. These tests are listed in the SI and mentioned in theDiscussion section.
Phenotypic characterization of microbial community
Changes in the gut microbiota phenotype were examined with the following analyses: cell concentration, sugar and protein content of the extracellular polymeric substance (EPS), EPM (an indicator of the relative surface charge), hydrophobicity, and cell size following published methods (Marcus et al.2012a2012b2013). Briefly, on daily sampling, bacteria from the model colon were washed with centrifugation (3,700 g) and then suspended in a 10 mM KCl solution before all phenotypic characterizations. All samples collected for all characterization methods were measured in three replicates twice a day at the same time points to eliminate additional variables. Additional details on these methods can be found in the SI.
Biochemical characterization of microbial community
Changes in SCFA production, pH, and conductivity of the gut environment were monitored to determine the effects of the NPs on the microbial community and gut environment. pH (Thermo Scientific™ Orion™ Model GD9156BNWP) and conductivity (YSI 3200 Conductivity Instrument Model # 3200 115V) of the colon effluent were measured twice a day at the same time points with three replicates each for all control and NP experiments. Conductivity is an indirect measurement of the metal ion dissociation from the NPs; measuring ionic content of the colon effluent gives approximations of changes in ionic strength (Griffin and Jurinak, 1973). Samples for SCFA analysis were collected in three replicates twice a day at the same time points from the colon effluent and polyethylene glycol (PEG) solution and were stored at −20°C until analysis with the gas chromatography flame ionization detector (GC-FID) (Agilent, Santa Clara, CA) using previously published methods (Venema et al.2003; Marcus et al.2013). The total concentration of the SCFAs was determined based on both the colon effluent and PEG samples. Butyric acid and acetic acid were analyzed by integration under a fitted flame ionization detection curve. Propionic acid is not reported due to the inability to integrate under the curve and account for accurate measurements of this SCFA.
Statistical analyses
All data was tested for normality and equal variance and analyzed with a one-way analysis of variance (ANOVA) and a Student's t test in Excel (v.14.0; Microsoft, Redmond, WA) to determine the phenotypic variation of the microbial community. Results were considered significant if p<0 .05.="" p="">

Results

All data presented in the results are based on a minimum of two 5-day-long experimental runs in the model colon. All data points collected are a culmination of a minimum of three replicates per measurement. Additional details are found in the SI regarding control experiments used in this study.
Phenotypic characterization
Extensive phenotypic testing of the microbial community was not only chosen based on known human health indicators such as SCFA production but also used common evaluation techniques, such as surface charge, hydrophobicity, cell concentration, and EPS content, that are associated with environmental microbial community sampling (Topping and Clifton, 2001; Wong et al.2006; Tazehkand et al.2008; Bolster et al.20092010; Marcuset al.2012a). These nontraditional testing methods were selected to further characterize the gut environment and microbial community and the changes that may occur during perturbances.
Data for cell hydrophobicity, EPM, and the sugar and protein content of the EPS were partitioned into three statistically different phases (p<0 .05="" 2="" 5-day-long="" and="" data="" days="" experiments.="" i="" same="" statistically="" the="" throughout="" tuesday="" wednesday="" were="">p

>0.05), and Thursday and Friday (days 4–5) data were also statistically the same (p>0.05). Therefore, weekdays were grouped in the following manner as three significantly different time points: an initial phase on Monday (day 1), a transition phase on Tuesday and Wednesday (days 2–3), and a homeostatic phase on Thursday and Friday (days 4–5). Data for all of the phenotypic characterization tests are also displayed per daily values and can be found in the SI (Supplementary Figs. S2–S7).
For cell hydrophobicity, all three metal NPs altered cellular hydrophobicity when compared with the control, ranging from a 0% to 10% increase during the course of the 5-day experiments (Fig. 1). All day 1 values (for all three NPs and control) were statistically the same (1–5%±0.8–5.3%, p>0.05). CeO2 and ZnO showed significant increases in hydrophobicity (p<0 .05="" 1="" 2="" and="" between="" day="" days="" eo="" sub="">2
 increased from 0.9%±4.4% to 19.0%±5.3%, ZnO increased from 8.4%±5.3% to 15.0%±8.2%), whereas all three metals lead to significant increases in cellular hydrophobicity from day 1 to days 4–5 (CeO2 from 0.9%±4.4% to 34%±16.8%, ZnO from 8.4%±5.3% to 31.0%±14.1%, and TiO2 from 4.5%±0.6% to 30%±14.8%).
FIG. 1. (A) Comparison of production of short-chain fatty acids (SCFAs, acetic and butyric acids) over 5-day-long experiments in the model colon in the presence and absence of TiO2, CeO2, and ZnO NPs. SCFA samples were collected twice a day for a minimum of 2 weeks and analyzed in triplicate with GC-FID. Each data point is an average of a minimum of 60 values averaged that were collected over the course of two experimental runs (two 5-day-long experiments) with samples in triplicate collected twice a day. (B)Hydrophobicity of bacterial cells is displayed as a function of NP exposure in the model colon during the 5-day-long experiments. Hydrophobicity was measured twice a day in triplicate. (C) Electrophoretic mobility (EPM), an indicator of the relative surface charge, of bacterial cells was measured in triplicate twice a day during the course of the 5-day-long experiments for a minimum of two runs. All measurements were made on washed cells from colon effluent. Error bars indicate standard deviation.
EPM (an indicator of the relative surface charge) of the microbial community was partitioned into three distinct phases. EPM became significantly less negative and was near neutral during the mid-week phase (days 2–3) for all three NPs when compared with the control (control =−1.1±0.2 [(μm/s)/(V/cm)], NPs range from −0.7±0.2 to −0.9±0.3 [(μm/s)/(V/cm)], Fig. 1). EPM then became significantly more negative during the homeostatic phase (days 4–5, control=−0.9±0.6 [(μm/s)/(V/cm)], NPs range from −0.97±0.5 to −1.2±0.4 [(μm/s)/(V/cm)]) (p<0 .05="" p="">
Sugar and protein content of the EPS was also partitioned into three significantly distinct data points (Fig. 2). The sugar content of the EPS significantly peaked mid-week during the transition phase (days 2–3, control=3.6±0.2 mg/cell×1010, TiO2 and CeO2 6–8.5±1.7–3.5 mg/cell×1010) for TiO2 and CeO2 NPs (p<0 .05="" content="" had="" no="" p="" protein="" significant="" the="" trends.="" whereas="">
FIG. 2. Average protein (A) and sugar content (B) of the extracellular polymeric substance (EPS) was measured in triplicate once a day during the course of the 5-day long experiments for a minimum of two runs (two 5-day-long experiments). EPS samples were collected once a day from the colon effluent and analyzed for sugar and protein content in triplicate. Error bars indicate standard deviation.
Cell concentration decreased from 4–5.5×1010 cells/mL to 1–3×1010 cells/mL during the course of the 5-day-long experiments for all conditions (data not shown); no significance was noted between the control (without NPs) and the three metal NPs, indicating that NPs did not have an effect on cell concentration in the model colon.
There was no significant difference (p>0.05) in cell size (radius) within the control experiments during the course of the 5-day-long experiment (Table 1), indicating that in the absence of NPs the cell size remains constant inside the model colon. However, significant changes (p<0 .05="" all="" cell="" ceo="" data="" did="" distinct="" during="" exposure="" in="" into="" metal="" not="" nps.="" other="" partition="" phases="" phenotypes.="" seen="" size="" sub="" the="" three="" to="" were="" with="">2
 caused cells to decrease significantly for the entire duration of the experiment when compared with the controls; specifically, cells were significantly smaller during the CeO2 exposure on days 4 and 5 (control 0.60±0.02–0.62±0.02 μm, CeO2 days 4 and 5=0.46±0.02–0.47±0.02 μm). Of the three NPs, CeO2 caused the most significant deviations from the control cell size. TiO2 NPs caused a decrease in cell radius on days 3 and 5, exhibiting a smaller cell size, 0.59±0.01 and 0.55±0.05 μm, when compared with the control. Of the three NPs, TiO2 caused the least amount of changes in cell size. When compared with the control, ZnO caused significant (p<0 .05="" 0.53="" 0.59="" 1="" 3="" 5="" and="" cell="" changes="" days="" decreases="" elicit="" for="" gut="" in="" indicate="" m="" marginal="" microbiota="" multiple="" nps="" occurring="" overall="" p="" phenotypes.="" phenotypic="" size="" summary="" that="" the="" to="">
Data table
Table 1. Cell Size Measurements as a Function of Nanoparticle Exposure

Biochemical characterization
SCFA production remained relatively constant between the control and all NP conditions (Fig. 1). The only significant result occurred during exposure to CeO2 and showed a decrease in butyric acid production (p<0 .05="" acid="78.0±16.0" butyric="" control="105.8±13.9" mm="" p="">
Changes in pH were monitored twice a day from the colon effluent. During the three individual NP exposures, the pH was significantly lower during the transition phase condition. The model colon expressed a lower pH for each NP when compared with the control for days 2–3 [p<0 .05="" 2="" 3="" 6.6="" a="" and="" class="ref fig" control="" day="" id="f3" nbsp="" ph="7.2±0.2" style="color: #892035; text-decoration: underline;">Figure 3
demonstrates comparisons among pH values for all experimental conditions. Day 1 pH values for the controls and the TiO2, CeO2, and ZnO NPs have a pH range between 6.8 and 7.2±0.06–0.3, with no significance between the control and the three NP pH values (p=0.07). For day 2, the pH was significantly lower for all three NPs (NP pH between 5.4 and 6.8±0.2–0.7, control=7.2±0.2) when compared with the control pH. Day 3 showed a significantly lower pH in the presence of TiO2 and CeO2 (day 2 control pH=6.6±0.3, TiO2 and CeO2 pH<4 .5="" 4="" 5.="" and="" between="" conditions="" control="" days="" differences="" during="" no="" np="" p="" significant="" the="" there="" were="">
FIG. 3. (A) Change in pH during the course of the 5-day-long experiments for the control and three NPs: TiO2, CeO2, and ZnO. pH measurements were taken from the colon and were measured in triplicate twice a day during the course of the 5-day-long experiments for a minimum of two runs (two 5-day-long experiments). (B) Change in conductivity (units) during the course of the 5-day-long experiments for the control and three NPs: TiO2, CeO2, and ZnO. Conductivity measurements were taken from the colon effluent in triplicate twice a day for a minimum of two runs, resulting in a minimum of 60 data points. Error bars indicate standard deviation.
Increasing conductivity trends (Fig. 3) were noted for CeO2 exposures, with only day 2 data significantly higher than the control (p=0.02, control=5.9±0.1 μS/cm, CeO2=6.7±0.5 μS/cm). ZnO on day 3 (p=0.002) and day 5 (p=0.008) had a lower conductivity for both days when compared with the control (control=6.2±0.1 μS/cm, ZnO=5.0±0.5 μS/cm). TiO2 did not cause a statistical change in conductivity. Overall, biochemical characterization demonstrated that slight changes occurred within the model colon reactor due to the NPs.


Discussion

Techniques used in this work offer unique insights into alterations to the microbial metabolic processes inside of a model colon caused by NPs. An important consideration when studying the gut microbiota and interpreting results is that one human sample does not represent the high variability and diversity of gut microbiomes present in the human population. However, work has shown that even pure cultures of genetically identical bacteria can behave in radically different ways under the same experimental conditions (Kulasekara et al.2013). This may explain some of the variation seen within the same conditions.
Here, the NPs added into the system clearly affected the phenotypic characteristics of the microbial community as well as the gut microenvironment. It is also important to note that the system also exhibits small variation within the control conditions on a weekly basis, specifically, with the cell size (no significant difference during control conditions, 0.59±0.05–0.62±0.02 μm) and the EPM (−0.90±0.2 to −1.1±0.2 [(μm/s)/(V/cm)]. Therefore, the system may accurately reflect a human gut microbial community.
Phenotypic characterization
Changes in cellular hydrophobicity have been linked to the formation of biofilms (Schäfer et al.1998; Marcus et al.,2012b), which are aggregates of microorganisms. Over the course of the experiments, the cells experienced an increase in hydrophobicity in all NP conditions. Therefore, increases in hydrophobicity may limit the cell's surface area for interactions with the colon media and NP solution inside of the model colon, possibly reducing contact between cells and NPs.
Bacterial cells during the NP exposures that presented near-neutral EPM when compared with the control may be attributed to the NPs coating the surface of the cell and therefore changing its EPM (Jiang et al.2009). EPM has been linked to the attachment and stability of microorganisms, with higher absolute values of EPM linked with more stable, or mobile, microorganisms (Elimelech et al.1998; Hermansson, 1999; Marcus et al.2013). This suggests that the microbial community exposed to the NPs is the least stable during the mid-week transition phase, and it is more stable in the initial and homeostatic phases. This indicates there is an increased chance for the community to undergo attachment and form aggregates during less stable conditions. In addition, this study had more near-neutral EPM values associated with the microbial community when compared with previous research with this system that used a microbial community that had more negative values and was donated from a healthy male (Marcus et al.2013). This demonstrates that microbial communities among individuals will also vary in the overall surface charge.
Sugar and protein content of the EPS was measured, because they have been utilized as indicators of cellular conditions (Eboigbodin and Biggs, 2008). Increased amounts of sugar compared with the protein content of the EPS are related to cell aggregation and biofilm formation (Marcotte et al.2007), which may be a mechanism of the cell to limit exposure to NPs inside the model colon; less surface area of the cells may be exposed to the colon media/NP solution. Here, the sugar content relative to the protein increased mid-week, indicating a greater potential for the cells to undergo aggregation during the transition (mid-week) phase. However, the protein portion of the EPS did not show distinct trends; this indicates that this testing method may not be ideal for determining changes within a colon microbial community.
Establishing changes in the distribution of bacterial cell size can give an indication whether NPs are causing phenotypic changes to the microbial community within the model colon; radius measurements indicate that morphological changes are occurring in bacteria width and length. Multiple changes in eukaryotic cellular morphology, which include changes in cell size such as cell rounding, nuclear membrane blebbing, chromatin condensation, and alterations in cytoplasmic organelles, have been associated with cytotoxicity caused by quantum dots and single-walled carbon nanotubes (SWCT) (Shvedova et al.2003; Lovrić et al.2005). Decreases in bacteria cell size have been attributed to stress, with one example being starvation. Stressed cells undergo phenotypic changes in size to increase the likelihood of survival. This includes reductive division to increase cell numbers and increasing the production of hydrophobic molecules that favor aggregation (Morita, 1986; Kjelleberg et al.1987). However, it should be mentioned that while community structure was not determined here with DNA sequencing, changes in the distribution of cell size may be attributed to changes in the microbial community structure (Hahn and Höfle, 1999; Jürgens et al.,1999; Hueso et al.2012). Regardless of this, this measurement gives an indication that the community's size distribution is changing over time in response to the NP exposures.
Biochemical characterization
Butyric acid is largely produced by the microbial breakdown of dietary fiber in the gut; increased levels of butyric acid inside the gut have been linked to protective measures against colorectal cancer such as cell proliferation reduction, decreases in tumor mass, and maintenance of a normal microbial population inside of the intestines (Ames, 1983; Boffa et al.1992; Harris and Ferguson, 1993; McIntyre et al.1993; Topping and Clifton, 2001). A decrease in butyric acid inside the gut not only results in increased susceptibility to inflammation but may also cause a decrease in the barrier function of the gut (Sunkara et al.2011). This indicates that NPs could have a two-fold impact on the intestine by first affecting SCFA production, then leading to systemic circulation of the NPs via an inhibited intestinal barrier.
Under all conditions tested (control and the three individual NP exposures), the pH of the colonic fluid decreased with time. This decrease is a natural phenomenon of the microbial community as it ages and digests the nutrients it is supplied during the course of the experiments (McLauchlan et al.1989; van Herwaarden et al.1999). The presence of the NPs did not result in a significant difference from the control, with all experiments exhibiting the same gradual decline in pH. Therefore, it is likely that the addition of the NPs did not alter the pH, but induced a change in the microbes that may have altered the pH.
pH did not partition into three distinct phases unlike the other data: hydrophobicity, sugar and protein content, and EPM. During the course of the experiments, the colon bioreactor mimicked conditions found inside of a proximal colon with an expected pH range between 5.5 and 7 (Nugent et al.2001) for control days 1–3, which demonstrates that the model colon is stable during this period. Control days 4–5 have a pH below 5.5; therefore, the changes noted in the NP experiments during days 4–5 (homeostatic phase) cannot be exclusively credited to the presence of the NPs. While decreases in a complex media with a neutral pH have been attributed NP dissolution (Bian et al.2011), it is unlikely that this occurred in the model colon due to the similar trends between the control and the three NP trends. Changes in pH may also be caused by acidic metabolites and the available substrates within the intestines (Louis et al.2007). A study in the literature has shown that there are circadian fluctuations within the stomach and intestinal pH (McLauchlan et al.1989; van Herwaarden et al.1999). Since pH did not show significant differences between the control and the NP exposures for 3 out of the 5 experimental days, overall, the decrease in pH within this system is a valid trend (McLauchlan et al.1989; van Herwaarden et al.1999).
Here, conductivity is used as an indirect measurement of the metal ion dissociation from the NPs; and it gives approximations of changes in the ionic strength of the colon effluent (Griffin and Jurinak, 1973). Compared with the control, the increase in day 2 CeO2 conductivity may be attributed to metal ion release from the NP at this specific pH, while the decrease in conductivity for ZnO days 3 and 5 may be attributed to cellular uptake of ions, or ions being bound and made unavailable by the complex colon matrix (Bian et al.2011).
Additional controls with NPs were conducted to simulate the range of pH exposure that may occur, from ingestion of NPs in food and water at a neutral pH, to a low pH in a stomach environment, and, finally, to a pH of 5.5–7 in the proximal intestine. The purpose of these controls was to determine whether changes in pH would affect the physicochemical properties of the NPs, and therefore have the possibility of altering the effects of NPs in the gut environment. As previous work has shown, changes in pH cause alterations in the physical-chemical behavior of NPs such as the surface charge, aggregation rate, and size (Wang and Keller, 2009; Chowdhury et al.20112013). Similar results were noted in the additional NP controls used in this study (data not shown) and may indicate that NP behavior may change on entering the low pH stomach environment, specifically the surface charge and size.
It is essential to note that interactions between NPs and bacteria in the intestines may be dependent on numerous factors: the surface charge of the NPs and bacteria, the chemical composition and surface charge of the digested food, and variability in diet. These factors may ultimately correlate to effects seen in humans on an individual basis. In fact, similar work has demonstrated that exposing common NPs found in food to stomach-like conditions will change their surface chemistry from negative to neutral or positive, causing the NPs to interact with negatively charged mucus proteins in the gastrointestinal tract and, in turn, affecting the transport of NPs within the intestine (McCracken et al.,2013). The purpose of this work was to measure responses of the microbial community during the NP exposures. Based on previous research, it is anticipated that the NPs altered by stomach-like conditions would also cause changes in the gut environment (McCracken et al.2013).
Changes measured in the microbial community when the model colon was dosed with environmentally relevant concentrations of NPs demonstrate that not only will the NPs only minimally affect phenotype but also the particles may also elicit other nonlethal effects. Such effects may include stress to the microbial community. This may imply that other undesired effects on the human gut occur due to the NPs and, therefore, some alterations in overall human health could occur. Other studies have indicated that intestinal exposure to metal NPs has numerous outcomes, such as alterations in the enteroendocrine secretory response of serotonin, and NPs having increased retention time within the gut from entrapment in the intestinal folds, which led to amplified changes to the intestinal physiology (Özel et al.,20132014).
In addition, ambient air particulate matter (<10 acid="" also="" altering="" and="" are="" been="" butyric="" cause="" changes="" colloidal="" community="" composition="" cytokine="" decrease="" enhance="" gut="" have="" i="" in="" inside="" intestine.="" investigated="" ish="" larger="" m="" magnitude="" material="" mice="" microbial="" model="" nbsp="" nps="" observed="" of="" orders="" particles="" permeability="" production="" scfa="" secretion="" shifting="" shown="" specifically="" than="" the="" three="" to="" was="" which="">et al.

2013). This example provides evidence that additional and alternative exposure routes should be considered when designing NP studies. Particulate matter, which can contain particles on the nanoscale, has been shown to have adverse consequences on the gastrointestinal tract and is associated with increased risks for many diseases in which the gut microbiota also play a significant role (Gubéran et al.1992; Kaplan et al.2009; Orazzo et al.2009; Ananthakrishnan et al.2011; Beamish et al.2011; Kish et al.2013). Therefore, another route of exposure to NPs in the gut may be through inhalation of ambient air, in addition to the ingestion exposure route and relevant doses accounted for in this study. The inhalation exposure route demonstrates that atypical exposure scenarios should be considered when designing future NP exposure experiments and this is a relevant pathway for exposure given the current knowledge on ultrafine particle matter and its impacts on health{Bakand, 2012 #638;Grassian, 2007 #637}.
Furthermore, NPs can undergo transformations in the environment or in consumer products such as speciation, dissolution, or aggregation that can alter the NP toxicity, reactivity, and physicochemical properties. These changes are not accurately represented with testing “as-received” particles (Levard et al.20122013; Lowry et al.2012a,2012b; Lombi et al.2013; Reidy et al.2013). Studying NPs in realistic scenarios is of the upmost importance. Here, the concern of a realistic exposure and subsequent transformation was addressed by dosing the sterile colon media with the NPs. The NPs remained in the colon media for the duration of the 5-day-long experiments. Unfortunately, one disadvantage is the difficulty in characterizing NPs after introduction into complex media due to limitations in analytical techniques (Levard et al.2012; Reidy et al.2013). While the NP exposures were designed to mimic realistic scenarios that would involve NP transformation, it was beyond the scope of this particular paper to evaluate the degree of transformation occurring in the colon environment. However, complementary studies have similarly used bacteria in both realistic settings and idealized laboratory studies to determine the effects of NP toxicity on organisms without measuring the fate or transformation of the particles in the systems (Ge et al.2013; Ivask et al.,2013).
Our initial hypothesis, that NPs induce phenotypic changes in a gut microbial community, was affirmed through significant measurable effects seen in the data. Tests that supported that NPs caused changes in the phenotype included hydrophobicity, EPM, sugar content of the EPS, cell size, conductivity, and SFCA (specifically butyric acid) production. Data for cell concentration and the protein content of the EPS demonstrated no significant results. Data were inconclusive for pH. With such a complex biological system, it is very likely that the phenotypic and biochemical changes observed are combinations of responses happening in parallel. The effects seen may be attributed to both changes induced by the NPs and natural phenomena associated with microbial community activity and other metabolic processes in a multifaceted environment such as the gut. Some examples of natural processes that could also influence the phenotypic and biochemical parameters are osmolarity, active metabolites, and electrolyte concentrations (Miller and Wood, 1996; Record et al.1998).
In addition, not only the complexity of the microbiota but also the intricacy of a living colon environment is extremely difficult to predict and monitor. Since the human colon microbiota plays a large and diverse role in overall human health, particularly with immunity and disease development (Guarner and Malagelada, 2003; Wallace et al.2011; Clemente et al.2012), and can vary greatly per individual basis, having an understanding of how the microbiota is affected at the phenotypic level may provide crucial information to better characterize an unhealthy or stressed colon microbial community.

Conclusions

This work highlights the relevance of studying a complex matrix and microbial community in situ rather than individual microbial species in vitro. Diverse analyses, including techniques traditionally used for environmental microbial analysis such as phenotypic measurements, are also needed to further characterize changes in microbial communities. These tests can provide a depth of information that may complement microbial community sequencing data and other traditional colonic enzyme assays. Here, significant changes in hydrophobicity, EPM, sugar content of the EPS, cell size, conductivity, and SCFA demonstrated that representative NPs found in consumer products and water sources with the potential to be ingested can minimally impact the gut microbial community. The techniques used and presented here offer a novel combination of indicators for identifying NP-induced perturbances within the gut microbiota.

Acknowledgments

The authors would like to thank the following people for their help with this work: Brian C. Cruz, Christina E. Gerges, and Jose Valle de Leon. This work was funded by a National Research Service Award Institutional Training Grant (T32 ES018827) and through the UC-CEIN (University of California Center for Environmental Implications of Nanotechnology); this material is based on work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI 0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review, and no official endorsement should be inferred.

Author Disclosure Statement

The authors declare no conflict of interest.

References

K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, and M.L. Forrest (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457.
A. Albanese, and W.C. Chan (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano.5, 5478.
B. Ames (1983). Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases. Science.221, 1256.
A.N. Ananthakrishnan, E.L. McGinley, D.G. Binion, and K. Saeian (2011). Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: An ecologic analysis. Inflamm. Bowel Dis. 17, 1138.
J.H.A. Apajalahti, L.K. Särkilahti, B.R.E. Mäki, J.P. Heikkinen, P.H. Nurminen, and W.E. Holben (1998). Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. Appl. Environ. Microbiol. 64, 4084.
F. Armougom, M. Henry, B. Vialettes, D. Raccah, and D. Raoult (2009). Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PloS One. 4, e7125.
M. Auffan, J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla, A. Botta, M.R. Wiesner, and J.-Y. Bottero (2009). CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitroNanotoxicology. 3, 161.
F. Bäckhed, H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, C.F. Semenkovich, and J.I. Gordon (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718.
L.A. Beamish, A.R. Osornio-Vargas, and E. Wine (2011). Air pollution: An environmental factor contributing to intestinal disease. J. Crohn's Colitis. 5, 279.
S.-W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, and V.H. Grassian (2011). Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid.Langmuir. 27, 6059.
L.C. Boffa, J.R. Lupton, M.R. Mariani, M. Ceppi, H.L. Newmark, A. Scalmati, and M. Lipkin (1992). Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary Fiber (wheat bran) in rats. Cancer Res. 52, 5906.
C.H. Bolster, K.L. Cook, I.M. Marcus, B.Z. Haznedaroglu, and S.L. Walker (2010). Correlating transport behavior with cell properties for eight porcine Escherichia coli isolates. Environ. Sci. Technol. 44, 5008.
C.H. Bolster, B.Z. Haznedaroglu, and S.L. Walker (2009). Diversity in cell properties and transport behavior among 12 different environmental Escherichia coli isolates. J. Environ. Qual. 38, 465.
Y.-S. Chen, Y.-C. Hung, I. Liau, and G.S. Huang (2009). Assessment of the in vivo toxicity of gold nanoparticles.Nanoscale Res. Lett. 4, 858.
I. Chowdhury, Y. Hong, R.J. Honda, and S.L. Walker (2011). Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flowrate. J. Coll. Interface Sci. 360, 548.
I. Chowdhury, S.L. Walker, and S.E. Mylon (2013). Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environ. Sci. Processes Impacts. 15, 275.
Jose C. Clemente, Luke K. Ursell, Laura W. Parfrey, and R. Knight (2012). The impact of the gut microbiota on human health: An integrative view. Cell148, 1258.
M.D. Collins, and G.R. Gibson (1999). Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69, 1052s.
J.H. Cummings (1984). Microbial digestion of complex carbohydrates in man. Proc. Nutr. Soc. 43, 35.
L.A. David, C.F. Maurice, R.N. Carmody, D.B. Gootenberg, J.E. Button, B.E. Wolfe, A.V. Ling, A.S. Devlin, Y. Varma, M.A. Fischbach, S.B. Biddinger, R.J. Dutton and P.J. Turnbaugh (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559.
K.E. Eboigbodin, and C.A. Biggs (2008). Characterization of the extracellular polymeric substances produced byEscherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules. 9, 686.
P.B. Eckburg, E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson and D.A. Relman (2005). Diversity of the human intestinal microbial flora. Science308, 1635.
M. Elimelech, X. Jia, J. Gregory, and R. Williams (1998). Particle Deposition & Aggregation: Measurement, Modelling and Simulation. Woburn, MA: Butterworth-Heinemann.
D.N. Frank, C.E. Robertson, C.M. Hamm, Z. Kpadeh, T. Zhang, H. Chen, W. Zhu, R.B. Sartor, E.C. Boedeker, N. Harpaz, N.R. Pace, and E. Li (2011). Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179.
D.N. Frank, A.L. St. Amand, R.A. Feldman, E.C. Boedeker, N. Harpaz, and N.R. Pace (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104, 13780.
Y. Ge, J.H. Priester, L.C. Van De Werfhorst, J.P. Schimel, and P.A. Holden (2013). Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 47, 14411.
Y. Ge, J.P. Schimel, and P.A. Holden (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45, 1659.
F. Gottschalk, T. Sonderer, R.W. Scholz, and B. Nowack (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol. 43, 9216.
B.A. Griffin, and J.J. Jurinak (1973). Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Sci. 116, 26.
F. Guarner, and J.-R. Malagelada (2003). Gut flora in health and disease. Lancet361, 512.
E. Gubéran, M. Usel, L. Raymond, J. Bolay, G. Fioretta, and J. Puissant (1992). Increased risk for lung cancer and for cancer of the gastrointestinal tract among Geneva professional drivers. Br. J. Ind. Med. 49, 337.
M.W. Hahn, and M.G. Höfle (1999). Flagellate predation on a bacterial model community: Interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65, 4863.
P.J. Harris, and L.R. Ferguson (1993). Dietary fibre: Its composition and role in protection against colorectal cancer. Mutat. Res. 290, 97.
M. Hermansson (1999). The DLVO theory in microbial adhesion. Coll. Surfaces B Biointerfaces. 14, 105.
L.V. Hooper, T. Midtvedt, and J.I. Gordon (2002). How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann. Rev. Nutr. 22, 283.
Elaine Y. Hsiao, Sara W. McBride, S. Hsien, G. Sharon, Embriette R. Hyde, T. McCue, Julian A. Codelli, J. Chow, Sarah E. Reisman, Joseph F. Petrosino, Paul H. Patterson, and Sarkis K. Mazmanian (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell155, 1451.
S. Hueso, C. García, and T. Hernández (2012). Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem. 50, 167.
A. Ivask, A. ElBadawy, C. Kaweeteerawat, D. Boren, H. Fischer, Z. Ji, C.H. Chang, R. Liu, T. Tolaymat, D. Telesca, J.I. Zink, Y. Cohen, P.A. Holden, and H.A. Godwin (2013). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 8, 374.
J. Jiang, G. Oberdörster, and P. Biswas (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77.
R. Jiménez-Vera, O. Monroy, A. Corona-Cruz, and M. García-Garibay (2008). Construction of a model of the human proximal colon. World J. Microbiol. Biotechnol. 24, 2767.
K. Jürgens, J. Pernthaler, S. Schalla, and R. Amann (1999). Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65, 1241.
T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki (2004). Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J. Cosmet. Sci. 55, 219.
G.G. Kaplan, E. Dixon, R. Panaccione, A. Fong, L. Chen, M. Szyszkowicz, A. Wheeler, A. MacLean, W.D. Buie, T. Leung, S.J. Heitman, and P.J. Villeneuve (2009). Effect of ambient air pollution on the incidence of appendicitis.CMAJ. 181, 591.
A. Keller, S. McFerran, A. Lazareva, and S. Suh (2013). Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1.
A. Keller, W. Vosti, H. Wang, and A. Lazareva (2014). Release of engineered nanomaterials from personal care products throughout their life cycle. J. Nanopart. Res. 16, 1.
A.A. Keller, and A. Lazareva (2013). Predicted releases of engineered nanomaterials: From global to regional to local. Environ. Sci. Technol. Lett. 1, 65.
A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, and Z. Ji (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962.
D. Kelly, J.I. Campbell, T.P. King, G. Grant, E.A. Jansson, A.G. Coutts, S. Pettersson, and S. Conway (2003). Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104.
N. Khlebtsov, and L. Dykman (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647.
I.-S. Kim, M. Baek, and S.-J. Choi (2010). Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol. 10, 3453.
M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, and K. Hristovski (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757.
L. Kish, N. Hotte, G.G. Kaplan, R. Vincent, R. Tso, M. Gänzle, K.P. Rioux, A. Thiesen, H.W. Barkema, and E. Wine (2013). Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PloS One. 8, e62220.
S. Kjelleberg, M. Hermansson, P. Marden, and G.W. Jones (1987). The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Ann. Rev. Microbiol. 41, 25.
B. Koeneman, Y. Zhang, P. Westerhoff, Y. Chen, J. Crittenden, and D. Capco (2010). Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol. Toxicol. 26, 225.
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai (2000). Nanotube molecular wires as chemical sensors. Science. 287, 622.
B.R. Kulasekara, C. Kamischke, H.D. Kulasekara, M. Christen, P.A. Wiggins, and S.I. Miller (2013). c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. Elife. 2, e01402.
P. Lepage, R. Häsler, M.E. Spehlmann, A. Rehman, A. Zvirbliene, A. Begun, S. Ott, L. Kupcinskas, J. Doré, A. Raedler, and S. Schreiber (2011). Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis. Gastroenterology. 141, 227.
C. Levard, E.M. Hotze, B.P. Colman, A.L. Dale, L. Truong, X.Y. Yang, A.J. Bone, G.E. Brown, R.L. Tanguay, R.T. Di Giulio, E.S. Bernhardt, J.N. Meyer, M.R. Wiesner, and G.V. Lowry (2013). Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ. Sci. Technol. 47, 13440.
C. Levard, E.M. Hotze, G.V. Lowry, and G.E. Brown (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 46, 6900.
R.E. Ley, F. Bäckhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight, and J.I. Gordon (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S. A. 102, 11070.
R.E. Ley, P.J. Turnbaugh, S. Klein, and J.I. Gordon (2006). Microbial ecology: Human gut microbes associated with obesity. Nature. 444, 1022.
L.K. Limbach, Y. Li, R.N. Grass, T.J. Brunner, M.A. Hintermann, M. Muller, D. Gunther, and W.J. Stark (2005). Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370.
E. Lombi, E. Donner, S. Taheri, E. Tavakkoli, Jämting, Å.K., S. McClure, R. Naidu, B.W. Miller, K.G. Scheckel, and K. Vasilev (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ. Pollut. 176, 193.
M.C.E. Lomer, R.P.H. Thompson, J. Commisso, C.L. Keen, and J.J. Powell (2000). Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst. 125, 2339.
R.Q. Long, and R.T. Yang (2001). Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc.123, 2058.
M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, J.R. Peralta-Videa, and J.L. Gardea-Torresdey (2010). X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58, 3689.
P. Louis, K.P. Scott, S.H. Duncan, and H.J. Flint (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 102, 1197.
J. Lovrić, H. Bazzi, Y. Cuie, G.A. Fortin, F. Winnik, and D. Maysinger (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377.
G.V. Lowry, B.P. Espinasse, A.R. Badireddy, C.J. Richardson, B.C. Reinsch, L.D. Bryant, A.J. Bone, A. Deonarine, S. Chae, M. Therezien, B.P. Colman, H. Hsu-Kim, E.S. Bernhardt, C.W. Matson, and M.R. Wiesner (2012a). Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 46, 7027.
G.V. Lowry, K.B. Gregory, S.C. Apte, and J.R. Lead (2012b). Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893.
A.J.H. Maathuis, E.G. van den Heuvel, M.H.C. Schoterman, and K. Venema (2012). Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutr. 142, 1205.
C. Manichanh, L. Rigottier-Gois, E. Bonnaud, K. Gloux, E. Pelletier, L. Frangeul, R. Nalin, C. Jarrin, P. Chardon, P. Marteau, J. Roca, and J. Dore (2006). Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 55, 205.
L. Marcotte, G. Kegelaer, C. Sandt, J. Barbeau, and M. Lafleur (2007). An alternative infrared spectroscopy assay for the quantification of polysaccharides in bacterial samples. Anal. Biochem. 361, 7.
I.M. Marcus, C.H. Bolster, K.L. Cook, S.R. Opot, and S.L. Walker (2012a). Impact of growth conditions on transport behavior of E. coliJ. Environ. Monit. 14, 984.
I.M. Marcus, M. Herzberg, S.L. Walker, and V. Freger (2012b). Pseudomonas aeruginosa attachment on QCM-D sensors: The role of cell and surface hydrophobicities. Langmuir. 28, 6396.
I.M. Marcus, H.A. Wilder, S.J. Quazi, and S.L. Walker (2013). Linking microbial community structure to function in representative simulated systems. Appl. Environ. Microbiol. 79, 2552.
C.R. Martin, and P. Kohli (2003). The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2, 29.
T. Matsuki, K. Watanabe, J. Fujimoto, T. Takada, and R. Tanaka (2004). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 70, 7220.
C. McCracken, A. Zane, D.A. Knight, P.K. Dutta, and W.J. Waldman (2013). Minimal intestinal epithelial cell toxicity in response to short- and long-term food-relevant inorganic nanoparticle exposure. Chem. Res. Toxicol.26, 1514.
A. McIntyre, P.R. Gibson, and G.P. Young (1993). Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 34, 386.
G. McLauchlan, G.M. Fullarton, G.P. Crean, and K.E. McColl (1989). Comparison of gastric body and antral pH: A 24 hour ambulatory study in healthy volunteers. Gut. 30, 573.
K. Miller, and J. Wood (1996). Osmosadapation by rhizosphere bacteria. Ann. Rev. Microbiol. 50, 101.
M. Minekus, M. Smeets-Peeters, A. Bernalier, S. Marol-Bonnin, R. Havenaar, P. Marteau, M. Alric, G. Fonty, and J.H.J. Huis in't Veld (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 53, 108.
S. Mondot, S. Kang, J.P. Furet, D. Aguirre de Carcer, C. McSweeney, M. Morrison, P. Marteau, J. Doré, and M. Leclerc (2011). Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm. Bowel Dis. 17, 185.
R. Morita (1986). Autoecological Studies and Marine Ecosystems. New York: Wiley & Sons.
B. Nowack, J.F. Ranville, S. Diamond, J.A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A.A. Koelmans, and S.J. Klaine (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31, 50.
S.G. Nugent, D. Kumar, D.S. Rampton, and D.F. Evans (2001). Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 48, 571.
F. Orazzo, L. Nespoli, K. Ito, D. Tassinari, D. Giardina, M. Funis, A. Cecchi, C. Trapani, G. Forgeschi, M. Vignini, L. Nosetti, S. Pigna, and A. Zanobetti (2009). Air pollution, aeroallergens, and emergency room visits for acute respiratory diseases and gastroenteric disorders among young children in six italian cities. Environ. Health Perspect. 117, 1780.
R.E. Özel, A. Hayat, K.N. Wallace, and S. Andreescu (2013). Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Adv. 3, 15298.
R.E. Özel, K.N. Wallace, and S. Andreescu (2014). Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish. Environ. Sci. Nano. 1, 27.
D.A. Pelletier, A.K. Suresh, G.A. Holton, C.K. McKeown, W. Wang, B. Gu, N.P. Mortensen, D.P. Allison, D.C. Joy, M.R. Allison, S.D. Brown, T.J. Phelps, and M.J. Doktycz (2010). Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 76, 7981.
J.J. Powell, N. Faria, E. Thomas-McKay, and L.C. Pele (2010). Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34, J226.
M. Rajilić-Stojanović, A. Maathuis, H.G.H Heilig.J., K. Venema, W.M. de Vos, and H. Smidt (2010). Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis.Microbiology. 156, 3270.
M.T. Record Jr, E.S. Courtenay, D.S. Cayley, and H.J. Guttman (1998). Responses of E. coli to osmotic stress: Large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23, 143.
B. Reidy, A. Haase, A. Luch, K. Dawson, and I. Lynch (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials. 6, 2295.
A. Schäfer, P. Ustohal, H. Harms, F. Stauffer, T. Dracos, and A.J.B. Zehnder (1998). Transport of bacteria in unsaturated porous media. J. Contam. Hydrol. 33, 149.
A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, and P. Baron (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health Part A. 66, 1909.
L.T. Sunkara, M. Achanta, N.B. Schreiber, Y.R. Bommineni, G. Dai, W. Jiang, S. Lamont, H.S. Lillehoj, A. Beker, and R.G. Teeter (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PloS One. 6, e27225.
S.S. Tazehkand, S. Torkzaban, S.A. Bradford, and S.L. Walker (2008). Cell preparation methods influenceEscherichia coli D21g surface chemistry and transport in saturated sand. J. Environ. Qual. 37, 2108.
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, and A.G. Rinzler (1996). Crystalline ropes of metallic carbon nanotubes. Science. 273, 483.
J. Thévenot, L. Etienne-Mesmin, S. Denis, S. Chalancon, M. Alric, V. Livrelli, and S. Blanquet-Diot (2013). Enterohemorrhagic Escherichia coli O157:H7 survival in an in vitro model of the human large intestine and interactions with probiotic yeasts and resident microbiota. Appl. Environ. Microbiol. 79, 1058.
B.J.R. Thio, D. Zhou, and A.A. Keller (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater. 189, 556.
D.L. Topping, and P.M. Clifton (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031.
P. Van den Abbeele, C. Grootaert, M. Marzorati, S. Possemiers, W. Verstraete, P. Gérard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, E. Zoetendal, M. Kleerebezem, H. Smidt, and T. Van de Wiele (2010). Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and clostridium cluster IX. Appl. Environ. Microbiol. 76, 5237.
van der M.J. Werf, and K. Venema (2000). Bifidobacteria: genetic modification and the study of their role in the colon. J. Agric. Food Chem. 49, 378.
A. van Herwaarden, M. Samsom, and A.J.P Smout.M. (1999). 24-h Recording of Intragastric pH: Technical aspects and clinical relevance. Scand. J. Gastroenterol. 34, 9.
K. Venema, M.H.M van Nuenen.C., E.G. van den Heuvel, W. Pool, and J.M.B van der Vossen.M. (2003). The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microb. Ecol. Health Dis. 15, 94.
T.C. Wallace, F. Guarner, K. Madsen, M.D. Cabana, G. Gibson, E. Hentges, and M.E. Sanders (2011). Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69, 392.
P. Wang, and A.A. Keller (2009). Natural and engineered nano and colloidal transport: Role of zeta potential in prediction of particle deposition. Langmuir. 25, 6856.
A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. von Goetz (2012). Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242.
R. Wolf, H. Matz, E. Orion, and J. Lipozencić (2003). Sunscreens—the ultimate cosmetic. Acta Dermatovenerol. Croat. 11, 158.
J.M.W. Wong, R. de Souza, C.W.C. Kendall, A. Emam, and D.J.A. Jenkins (2006). Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235.
O. Yamamoto (2001). Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643.
Y. Yang, and P. Westerhoff (2014). Presence in, and release of, nanomaterials from consumer products. In D.G. Capco, and Y. Chen, Eds., Nanomaterial. Netherlands: Springer, pp.117.
O. Zeyons, A. Thill, F. Chauvat, N. Menguy, C. Cassier-Chauvat, C. Oréar, J. Daraspe, M. Auffan, J. Rose, and O. Spalla (2009). Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and synechocystis.Nanotoxicology. 3, 284.

Supplementary Material

Users who read this article also read

No Access
Nichola KinsingerRyan HondaValerie KeeneSharon L. Walker
Environmental Engineering Science. April 2015: 292-300.
Abstract | Full Text PDF or HTML | Reprints | Permissions
No Access
Heather O'Neal StanclKiril HristovskiPaul Westerhoff
Environmental Engineering Science. April 2015, ahead of print.
Abstract | Full Text PDF or HTML | Reprints/Permissions
No Access
Maren Roman
Industrial Biotechnology. February 2015: 25-33.
Abstract | Full Text PDF or HTML | Reprints | Permissions
No Access
Leo Galland
Journal of Medicinal Food. December 2014: 1261-1272.
Abstract | Full Text PDF or HTML | Reprints | Permissions
No Access
Daniel P. McInnisDiogo BolsterPatricia A. Maurice
Environmental Engineering Science. January 2015: 4-13.
Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions
No Access
Massimo PignaAntonio Giandonato CaporaleLucia CavalcaAlessia SommellaA. Violante
Environmental Engineering Science. May 2015, ahead of print.
Abstract | Full Text PDF or HTML | Reprints/Permissions

venerdì 22 maggio 2015

LA GRECIA AVVERTE CHE IL 5 GIUGNO SARÀ DEFAULT, E MOODY'S PARLA DI 'CONGELAMENTO DEI DEPOSITI'

LA GRECIA AVVERTE CHE IL 5 GIUGNO SARÀ DEFAULT, E MOODY'S PARLA DI 'CONGELAMENTO DEI DEPOSITI'

Michael Snyder
trd Sa Defenza



Il governo greco afferma che un "momento della verità" ci sarà il 5 giugno. In entrambi i casi o i creditori si accordano per rifinanziare il dedito greco, o la Grecia farà default sul rimborso da € 300 milioni dovuti al FMI.

Tecnicamente in base alle regole del FMI ci sono altri 30 giorni di tempo, dopo di che 
sarà "default", la notizia che la Grecia non può pagare creerà un vero terremoto in tutto il mondo finanziario. E per tutti i possessori di titoli greci inizierà il calvario, saranno presi dal panico nel momento in cui si renderanno conto che potrebbero perdere tutto. Ci sono grandi banche in tutta Europa che hanno grandi volumi di titoli e derivati ​​greci che sono legati all'andamento del debito greco. Se non viene fatto nulla per evitare il disastro, il default della Grecia potrebbe essere la scintilla, che  farà scoppiare una grave crisi finanziaria europea quest'estate.

Come detto l'altro giorno , né l'UE né il FMI hanno dato più soldi alla Grecia dall'agosto 2014. Così il governo greco ha quasi finito i soldi, e senza nuovi prestiti non saranno in grado di rimborsare i prestiti che stanno arrivando a scadenza. In realtà, le cose son messe così male che il governo greco avverte che il 5 GIUGNO sarà default ...

"La Grecia non è in grado di onorare il prossimo rimborso al Fondo Monetario Internazionale il 5 giugno, a meno che i creditori stranieri  non eroghino altri finanziamenti"
 Afferma un parlamentare del partito al Governo , quale ultimo  avvertimento di Atene prima del default.
Il primo ministro Alexis Tsipras del Governo di sinistra, ha dichiarato  di augurarsi  di raggiungere un accordo in pochi giorni , di scambio di denaro per riforme, anche se i creditori dell'Unione Europea e del FMI sono pessimisti nel dire che i colloqui procedono troppo lentamente.
Naturalmente tutto questo è parte di un gioco in cui la  posta in gioco molto alta. I greci credono che i tedeschi facciano un passo indietro di fronte alla prospettiva di una crisi finanziaria europea, mentre i tedeschi pensano al contrario che i greci alla fine saranno costretti ad accettare le loro richieste.

Quindi, per ogni giorno in più  che passa , ci si avvicina ancor più al baratro, i Greci cercano di fare del loro meglio per far sapere che non si tratta di un bluff. Proprio oggi, un portavoce del governo greco ha dichiarato che se non ci sarà un accordo entro il 5 giugno, il Fondo Monetario Internazionale "non vedrà soldi"...

Fonti ufficiali greche parlano di una corsa contro il tempo per concludere un accordo prima che arrivi la scadenza di un totale di circa 1,5 miliardi di euro (1,7 miliardi dollari), dovuti al Fondo monetario internazionale per il prossimo mese, la cui rata di 300milioni € è per il 5 giugno.
 Nikos Filis, portavoce per il partito Syriza al governo, ha detto alla televisione ANT1. "Ora è il momento che i negoziati arrivino al dunque. Ora è il momento della verità, il 5 giugno 
" Se per allora non ci sarà accordo e non si risolve il problema di liquidità, non vedranno un soldo ".
Ma i tedeschi sanno che i greci hanno disperatamente bisogno di altri soldi e non possono durare più a lungo. Il sistema bancario greco è così vicino al collasso che Moody appena declassato di nuovo ammonendo che  nei prossimi mesi  
" vi è una elevata probabilità di una imposizione di controlli sui capitali e il congelamento dei deposito"...
Le prospettive per il sistema bancario greco è negativo, per effetto del peggioramento della raccolta e della liquidità delle banche greche, afferma Moody Investors Service in un nuovo report pubblicato recentemente. Tali pressioni è difficile che si allegeriranno nei prossimi 12-18 mesi e vi è una elevata probabilità di una imposizione di controlli sui capitali e di congelamento dei depositi . 
Il nuovo rapporto: "Banking Sistem Outlook: sulla Grecia", è disponibile su www.moodys.com. Gli abbonati di Moody possono accedere a questo rapporto con il link fornito alla fine di questo comunicato stampa.
Moody's osserva una  significativa fuoriuscita di capitali dal dicembre 2014 di un volume di oltre € 30miliardi ed hanno aumentato la dipendenza delle banche dai finanziamenti della Banca Centrale. Tale incertezza è costretta a perdurare in Grecia e continua a compromettere la fiducia dei depositanti.
Purtroppo, quando le cose davvero inizieranno a deragliare, i Greci potrebbero trovarsi ad affrontare situazioni peggiori dei conti bancari congelati. C'è una forte possibilità che in Grecia a motivo del crollo del sistema bancario si assista alla confisca dei risparmi in perfetto stile Cipriota.
Il Governo greco sta già parlando della possibilità di una tassa speciale sulle transazioni bancarie ...
Atene sta promuovendo l'idea di un prelievo speciale sulle transazioni bancarie a un tasso di 0,1-0,2 per cento , mentre la proposta del governo di una tassa IVA a due livelli - a seconda che il pagamento sia effettuato in contanti o con carta di credito - ha incontrato forte opposizione da parte dei creditori del paese. 
Un alto funzionario del Governo ha dichiarato a Kathimerini che fra le proposte discusse con la zona euro e il Fondo Monetario Internazionale c'è l'imposizione di una tassa sulle transazioni bancarie, il cui tasso esatto dipenderà dalle esenzioni che si decideranno. L'obiettivo è quello di raccogliere dai300 ai 600milioni di euro su base annua. 
La tassa non includerà i prelievi bancomat, e le operazioni fino a 500 €.
Purtroppo, la maggior parte delle persone [in America] non si preoccupano  molto di quello che succede dall'altra parte del mondo.

Ma dovrebbero preoccuparsi.

Se la Grecia fa default e il sistema bancario greco collassa, le azioni e obbligazioni 
crolleranno in tutta Europa. Molti credono che tale incidente possa essere "contenuto" alla sola Europa, in realtà crederlo è solo un'illusione.

Inoltre, l'euro crollerà e verrà ridimensionato, e causerà problemi finanziari in tutto il pianeta. Ho recentemente spiegato , che l'euro è diretto alla parità con il dollaro statunitense per poi andare sotto la parità. Quando i giochi saranno fatti ci troveremo l'euro a livelli più bassi di tutti i tempi.

Naturalmente anche il dollaro statunitense crollerà, ma ciò accadrà dopo, è una storia per altri giorni.

Secondo Bank for International Settlements [Banca dei Regolamenti Internazionali, sono in essere contratti sui derivati,
 direttamente legati al valore dell'euro, del dollaro e in valore di altre valute per un valore di 74triliardi di dollari.

Quindi, se si crede che ciò che sta accadendo in Grecia non può avere grandi conseguenze  per l'intero sistema finanziario mondiale, si sbaglia di grosso
.

Quello che sta accadendo in Grecia è di capitale importanza, ed è ora che tutti vi prestino la massima attenzione.



giovedì 21 maggio 2015

La Sposa di Frankenfood: Hillary Clinton spinge l'agenda degli OGM ... assume Monsanto come lobbista ... e prende milioni di dollari da Monsanto & company

La Sposa di Frankenfood: Hillary Clinton spinge l'agenda degli OGM ... assume Monsanto come lobbista ... e prende milioni di dollari da Monsanto & company 

Mike Adams 
naturalnews
Trd Sa Defenza



Ai democratici che erano stati programmati per votare alla cieca per Hillary Clinton son cascate le mani a terra dopo aver appreso la verità sui legami di Hillary con la Monsanto. I legami sono così in profondi, che  è  stata soprannominata la "Sposa di Frankenfood." ( Tweet della storia )

La base liberal a cui si riferivano i legami con Hillary Clinton sono scioccati dalle informazioni sulla comunella tra Clinton e Monsanto. Il punto importante è che quasi tutti i sostenitori di Hillary Clinton non hanno idea di chi Lei sia veramente, come dimostra questo straordinario nuovo video di Mark Dice e Luca Rudkowski

" Il legame di Hillary Rodham Clinton al gigante dell'agrobusiness Monsanto, e il suo sostegno per il settore del colture geneticamente modificate, spinge gli ambientalisti in Iowa a chiamarla la 'Sposa di Frankenfood' ", riferisce il Washington Times . "Una grande fetta di donne ha espresso forte sostegno per la candidatura della signora Clinton fino a chè non è apparsa la questione degli OGM, i simpatizanti liberal spingono  il senatore Bernard Sanders del Vermont, un coraggioso liberale, a  sfidadarla per la nomination democratica." Oh mio Dio, quanto poco sanno veramente sulla reale Hillary Clinton ... 





Monsanto e Bill Gates sono migliori sostenitori e finanziatori della Fondazione della Famiglia Clinton

Un rapido sguardo a questo tavolo di donatori della Clinton Family Foundation rivela sia la Fondazione Bill & Melinda e la Monsanto come due dei donatori più fortemente incisivi della Clinton "Crime" Family Foundation. 
Bill Gates, naturalmente, spinge i vaccini nel mondo, mentre Monsanto spinge gli OGM. Un duo tossico motivato dallo spopolamento globale.

donatori di Hillary Clinton includono anche i produttori di farmaci Pfizer, la ExxonMobil, Dow Chemical, Goldman Sachs, Procter & Gamble, Coca-Cola e molti altri. E' chi se non la peggiore accolta delle corporations più diaboliche delle istituzioni esistenti sul pianeta Terra , e hanno tutti dato enormi somme di denaro - decine di milioni di dollari - a Hillary Clinton.

Altre corporations li finanzia, e naturalmente, acquistano forte influenza sui Clinton . Questo fatto ovviamente ha irritato la sinistra del Partito democratico che ha attaccato George Stephanopoulos, che è risultato aver nascosto la sua donazione di  75,000 dollari alla stessa Fondazione Clinton . Egli sostiene di aver pensato che stesse donando per fermare "la deforestazione." Hillaryious!

Hillary Clinton ingaggia ex lobbista della Monsanto per seguire la sua campagna elettorale


Se non sei ancora convinto che Hillary Clinton ha forti legami con la Monsanto, chiedetevi perché ha appena assunto un importante lobbista della Monsanto per eseguire la sua campagna elettorale. 

Come  riporta True Activist
Hillary Clinton ha recentemente annunciato che aveva nominato  da molto tempo il lobbista Jerry Crawford della Monsanto come consigliere per il suo "Ready for Hillary" super PAC ... Nel corso degli anni, Crawford è stato determinante nella lotta contro i piccoli agricoltori in tribunale e proteggere il monopolio seme della Monsanto.  
Crawford è un " gestore della bustarella per pari opportunità" che distribuisce tangenti ai politici e ai membri di entrambi i partiti. "Crawford ha per lo più lavorato con politici democratici in passato, ma ha anche dato il suo sostegno a candidati repubblicani. A chi, in realtà, era disposto a sostenere gli obiettivi della Monsanto avrebbe ricevuto il sostegno di Crawford", dice TrueActivist.com.

Lo Studio legale di Hillary Clinton è usato per avere Monsanto come cliente

Torna a bomba il 1990, il periodo in cui Vince Foster è stato ucciso per quello che sapeva sui Clinton, Hillary Clinton è stata un socia al Rose Law Firm [è uno dei più importanti studi legali in Arkansas]. Questo studio legale conteggiava la Monsanto come suo cliente:
"La sua storia a sostegno degli OGM risale ai suoi primi giorni  di avvocato in Arkansas alle dipendenza di Rose Law Firm, che rappresenta la Monsanto e altri leader dell'agrobusiness" riferisce Washington Times.
Quasi nessuno degli elettori attivisti d'oggi sono ancora abbastanza anziani da ricordare il Rose Law Firm, lo scandalo dei 'Clinton Whitewater ', o anche il fatto che Hillary Clinton ha attaccato sui media tutte le donne che hanno cercato di testimoniare pubblicamente di essere state violate sessualmente da Bill Clinton. (Sì, la campagna di Hillary "la colpa è della vittima" a protezione di Bill!) 
Eppure, in un'epoca in cui i progressisti esigono piena trasparenza su tutte le questioni che contano per loro - l'immigrazione, il matrimonio gay, il controllo delle armi e così via - Hillary si ritrova esattamente dalla parte sbagliata della questione degli OGM. E' un burattino della Monsanto e tutte le sue pratiche tossiche che distruggono la vita e distruggono l'ambiente.




Hillary Clinton spinge i pesticidi tossici, erbicidi e altri prodotti chimici agricoli

In ogni occasione, Hillary Clinton spinge i prodotti chimici tossici, pesticidi e diserbanti che contaminano l'approvvigionamento di cibo, promuovono malattie come l'Alzheimer e minacciano persino la distruzione dell'ambiente. Hillary Clinton, Sposa di Frankenfood, è anche uno spacciatore dell'"olocausto chimico" che lavora duro per assicurarsi che ogni donna e bambino in America mangi cibo coltivato con glifosato che causa il cancro. 
"Nel dibattito sugli OGM, la signora Clinton ha sempre parteggiato per la aziende chimiche ", dice il Washington Times. "Un nuovo studio scientifico, ha rafforzato le preoccupazioni degli ambientalisti, poché prova che l'erbicida Roundup potrebbe essere collegato a una serie di problemi della salute e malattie, tra cui il Parkinson, l'infertilità e il cancro. Lo studio pubblicato il mese scorso sulla rivista scientifica Entropy ha anche riferito la prova che i residui di glifosato , un ingrediente principale del diserbante, è stato ritrovato nel cibo. "
Quel cibo, naturalmente, arricchisce la Monsanto e le altre aziende biotech, molti dei quali danno enormi donazioni a Hillary Clinton fino a quando lei continua a vantare le benefiche proprietà del veleno

Si scopre che un voto per Hillary, è un voto per Monsanto .



Hillary Clinton ha un accordo con la Russia, per vendergli combustibile nucleare

Non sono solo gli OGM, che infestano la vera storia di Hillary Clinton. Come riferisce The Atlantic quest'anno , Hillary Clinton era anche uno strumento per consegnare al governo russo in quasi-monopolio le forniture di uranio per armi nucleari. 

Per tutto quel tempo, il denaro degli interessi sull'uranio scorreva dentro la fondazione Clinton: 

In totale, le persone affiliate a Uranium One o il suo predecessore ha fruttato più di 8 milioni di dollari alla Fondazione Clinton tra il 2008 e il 2010. Nel frattempo, Bill Clinton ha ricevuto $ 500,000 per un discorso a Mosca, pagato da una banca aumentando lo stock di Uranium One. 

La questione tocca la base dei simpatizzanti elettori che appoggiano la Clinton? Perché i progressisti sono giustamente anti-nuclearisti e contro le armi nucleari . Eppure il loro campione del genere Hillary Clinton è là fuori a promuovere la proliferazione delle armi nucleari e del combustibile nucleare, il tutto mentre rastrella milioni di dollari per la sua fondazione in cambio della vendita con la sua influenza al miglior offerente. 
Improvvisamente la presidenza Clinton, non suona poi essere così "progressista", vero?


Hillary Clinton ripete i punti di discussione della Monsanto, come speaker per la Biotechnology Industry Organization

Giusto per assicurarsi che nessuno sia confuso, su dove sia il cuore di Hillary Clinton sul tema di OGM e delle biotecnologie, ha ripetuto apertamente dando del ciarlatano a punti scientifici fermi, in una discussione pubblica sulla Monsanto. 

Nel 2014, ha parlato al Biotechnology Industry Organization e sostenuto punti di discussione della Monsanto, dicendo: 
Sono a favore dell'utilizzo di semi e prodotti che hanno una comprovata esperienza ... E per continuare sul caso di coloro che sono scettici sul fatto che loro non possono sapere quello che mangiano. La questione dei cibi ibridi o geneticamente modificati va avanti da molti anni, anche se vi è un grande divario tra i fatti e percezione ... 
Durante il discorso, Clinton dice che tutte le persone anti-OGM sono idioti anti-scientifici che non conoscono "i fatti". Quei "fatti", naturalmente, sono tutti artificiosamente costruiti dalla Monsanto e la sua rete di influenza finanziaria su scienziati, università e anche i media mainstream. Hillary Clinton ha concluso che, in sostanza, dal momento che non sai che hai già mangiato OGM, allora è sicuro continuarlo a fare

Guardate il video nauseante qui:



Ci sarà qualcuno che sarà in grado di sfidare la Sposa di Frankenfood?
Vi siete chiesti il motivo per cui non c'è quasi alcuna volontà tra gli oltre 100 milioni di democratici di sfidare Hillary Clinton nella nomination, è perché i democratici sono terrorizzati da Hillary. 
Ecco come va lo scherzo, Hillary Clinton non solo sa dove sono sepolti tutti i corpi ... ma, ordinò di metterli lì, prima di tutto! 

Per decenni, i Clinton sono stati in grado di controllare la versione ufficiale e costruire una falsa immagine di chi sono veramente e ciò che realmente credono. Ma ora, grazie a mezzi di informazione indipendenti che dominano nel-l'audience non si affidano più esclusivamente a media mainstream, i Clinton non possono più raccontare una storia revisionionata aspettandosi che funzioni. 
La semplice verità - il grande orrore dei progressisti in tutto il mondo - è che Hillary Clinton ha da tempo speso le sue energie a favore  dell'agricoltura chimica e delle biotecnologie. E' la tua RoundUp Ready puttana ... la tua matriarca Monsanto... la " mamma glifosato" armata di pugni pieni di furore tossico. 
E vuole il tuo voto perché sta andando a detronizzare l'uno per cento? Sul serio? Patetico. Hillary Clinton è finanziata dall'uno per cento! 

Se pensate che Hillary Clinton si oppone all'uno per cento, si deve anche credere che ExxonMobil si oppone l'estrazione del petrolio.

Che cosa ci si può aspettare da una presidenza Clinton / Monsanto?
Ci sono così tanti legami tra Clinton e la Monsanto che la criminale società biotech è praticamente  candidata alla vicepresidenza di Hillary

Clinton / Monsanto for President 2016! 

E se la Clinton diventa presidente, ci si può aspettare che l'ordine del giorno completo della Monsanto viene attuata dalla politica nazionale

• Divieto federale a livello nazionale in materia di etichettatura degli OGM. 
• Approvazione immediata USDA di tutte le colture sperimentali di OGM. 
• Estremi, attacchi contro gli attivisti politicamente motivati, scienziati e giornalisti anti-OGM. 
• Aumenti enormi di sovvenzioni finanziate dai contribuenti per gli agricoltori che coltivano colture OGM. 
• Aggressivo imperialismo aziendale per rovesciare il divieto di glifosato e OGM in altre nazioni. 
• I tentativi  anche della FDA di mettere fuori legge le etichette OGM verificati, nello stesso modo sferrano un attacco contro le etichette senza ormoni del latte vaccino.

Non si illuda: Votare per Hillary è un voto per Monsanto.


mercoledì 20 maggio 2015

Informazioni aggiornate: Jade Helm finalmente ha un nome, a est degli USA...

Informazioni aggiornate: Jade Helm, finalmente ha un nome, a est degli USA... [Video]

N.Morgan
beforeitsnews
trd Sa Defenza


Ho scoperto che questa informazione era del 2002, nel video che avevo presentato per quanto riguarda Robin Sage.

Le mie scuse ai lettori, è un mio errore.

Tuttavia, quando ho cominciato a investigare a fondo questo aspetto, ho scoperto che non solo Robin Sage era presente alla riunione su Jade HelmBastrop nel  anche Texas , ma, anche  uno dei 'berretti verdi' è stato ucciso durante le esercitazioni, questo apre il vaso di Pandora sulla pericolosità di queste esercitazioni, a prescindere da quanto affermano militari.

Questa disgrazia potrebbe accadere a qualsiasi cittadino, ora che queste esercitazioni si sono trasferite nell'area pubblica?



Eradicazione dei militanti locali dal territorio, è questo che significa Jade Helm?

Lo suggerisce la scarpa di legno nel logo.

Nel 2002, il vice sceriffo e deputato del North Carolina ha sparato e ucciso uno dei concorrenti delle forze speciali durante una esercitazione di Robin Sage.

Il deputato afferma che i soldati e un civile destavano sospetti perchè agivano come i guerriglieri.

Le truppe portavano armi senza munizioni ed erroneamente hanno ingagiato il deputato nell'esercitazione come gioco nel ruolo delle parti.

Uno dei soldati è rimasto ucciso nello scontro con il deputato.

La famiglia del soldato ha fatto causa all'ufficio dello sceriffo ed è stata successivamente liquidata.

Si può tranquillamente presumere che molte delle forze speciali operative che prenderanno parte a Jade Helm 15 hanno già partecipato alle esercitazioni Robin Sage durante la loro carriera militare.

Ma, non vi è alcuna traccia di un governatore del Nord Carolina che comandava e desse ordini alle forze militari nel "monitoraggio" dell'esercitazione.






Chi è Robin Sage?

Da Professionalsoldiers.com la storia di Robin Sage:

"Per più di 50 anni, l'esercitazione Robin Sage è stata la cartina tornasole per i soldati che sperano di guadagnare l'ambito delle Forze Speciali dei berretti verdi. È durante Robin Sage, che si tiene nelle contee rurali del Nord Carolina, che i soldati devono mettere in gioco tutte le abilità che hanno imparato durante il corso di qualificazione alle forze speciali nella prova di u'esercitazione di formazione non convenzionale di guerra.
"Nel 1952, il colonnello Aaron Bank, l'uomo conosciuto come il padre di forze speciali, ha creato Robin Sage, è stato progettato per mettere i soldati in scenari 'reali' per provare la loro formazione e l'adattabilità. La prima esercitazione si è svolta fuori dalla foresta nazionale di Chattahoochee in Georgia, e più tardi nel Pisgah e nel Uwharrie foreste nazionali del North Carolina.
"Nei suoi primi giorni, l'esercitazione è nota come Cherokee Trail e Woods di Gobbler; tuttavia, durante l'operazione prende nome in parte dalla città di Robbins, della Carolina del Nord, una zona centrale di operazioni per l'esercitazione, e in parte dall'ex colonnello dell'esercito Jerry Sage, un veterano della seconda guerra mondiale dell'Office of Strategic Services, o OSS, ufficiale che ha insegnato le tattiche non convenzionali di guerra ".

I luoghi di Robin Sage:

L'esercitazione è condotta su un'area di 8.500 miles2. E' condotta in una zona comprendente 15 contee: Alamance, Anson, Cabarrus, Chatham, Davidson, Guilford, Hoke, Montgomery, Moore, Randolph, Richmond, Rowan, Scozia, Stanly, e Union. People's_Republic_of_Pineland

Immagine gentilmente concessa da seanlinnane.blogspot.com

Circa 1.000 persone partecipano all'esercitazione, tra cui studenti, quadri, ausiliari civili, e il ruolo militare players. Approssimativamente  400 residenti del North Carolina sono di sostegno 'volontario' a ogni iterazione di Robin Sage. Robin Sage si svolge otto volte all'anno, e fa parte della esercitazione  speciale delle Forces Training pipeline, che include un'ampia cooperazione e di coordinamento con le forze dell'ordine locali e i governi di quelle contee, secondo il comandante. Sotto Robin Sage, ci sono più di 100 competitor delle forze speciali che aiuteranno 'a liberare' un paese immaginario chiamato 'Pineland' con confini che si sovrappongono con Alamance, Anson, Cabarrus, Chatham, Davidson, Guilford, Hoke, Montgomery, Moore, Randolph, Richmond, Rowan, Scozia, Stanly, e dell'Unione contee nello stato.

http://sofrep.com/40934/jade-helm-15-special-forces-off-post-training/#ixzz3a9LJBYDs

http://sofrep.com/40934/jade-helm-15-special-forces-off-post-training/












Mentre i politici e MSM hanno tutti gli occhi puntati sugli stati del sud-ovest nella operazione è chiamata "Squirrel [scoiattolo]" è in vigore da più di un decennio una simile 'esercitazione' nel New Hampshire e nella Georgia verso il Mississippi fino al Tennessee.

La serie "REVOLUTION" Netflix è una buona rappresentazione di ciò che potremmo avere di fronte in America dati i recenti sviluppi.

Così queste esercitazioni militari si sono espanse attraverso tutti gli Stati membri in America, della costa orientale non saranno ignorati.

Le forze speciali  coprono quasi tutti gli Stati membri della federazione con "esercitazioni" militari.








Da www.army.mil .

Questo mese, i candidati delle forze speciali  parteciperanno alla esercitazione Robin Sage, che si svolgono in 15 contee del Nord Carolina nella prova finale della loro formazione nelle Forze Speciali per la 'Qualification Course'.

Tra il 13 ottobre e il 24, circa 100 di questi studenti parteciperanno a queste esercitazioni, prima della laurea del corso e passare ai loro primi incarichi nella comunità delle Forze Speciali dell'Esercito.

Robin Sage è una insieme di esercizi di due settimane che si svolgono otto volte l'anno, una volta per ogni classe dei candidati delle Forze Speciali.

Questi candidati sono studenti presso l'US Army di John F. Kennedy Special Warfare Center e la Scuola, con base a Fort Bragg.

Paese nozionale degli esercizi è Pineland che comprende 15 contee nel North Carolina, tra cui Alamance, Anson, Cabarrus, Chatham, Davidson, Guilford, Hoke, Montgomery, Moore, Randolph, Richmond, Rowan, Scozia, Stanly e contee dell'Unione.

Durante l'esercitazione, i candidati delle forze speciali nei giochi di Robin Sage conducono un ruolo non solo di missioni di addestramento, ma di vere e proprie assalti controllati e ingaggio da key-leader , ma, anche occupare, mangiare e dormire in aree civili.

Tutti i movimenti e gli eventi Robin Sage sono coordinati con funzionari di pubblica sicurezza in tutto l'interno delle città e contee che ospitano la formazione.

I residenti possono sentire rumore di spari e vedere occasionalmente razzi. I controlli in atto garantiscono l'inolumità delle persone o delle cose.

I residenti con problemi dovrebbero contattare le forze dell'ordine locali, che saranno immediatamente in contatto con i funzionari di controllo dell'esercizio.

Con l'aiuto delle autorità civili e dei cittadini locali, Robin Sage è stata condotta dal 1974; prima di quel momento, le esercitazioni simili sono eseguite sotto il nome di Devil's Arrow, Swift Strike and Guerrilla USA.



Per l'esercito americano, la scuola John F. Kennedy Special Warfare Center , per la sicurezza è sempre la massima priorità del comando durante tutti gli eventi formativi.

Sono state attuate le seguenti misure:

• formale comunicazione scritta ai capi delle forze dell'ordine nelle contee scelte, con una visita a seguito di un rappresentante della unità.
• Tutti i civili e studenti partecipanti militari sono informati delle procedure da seguire in caso di contatto con le forze dell'ordine.
• Gli studenti indossano solo abiti civili, se la situazione lo richiede, come determinato dagli istruttori, in questi casi, indosseranno un caratteristico bracciale marrone.
 Il personale di ruolo come gli agenti delle forze dell'ordine di  Pineland  indossano distintivi  cappelli e bracciali blu.
• Aree di formazione e veicoli utilizzati durante le esercitazioni sono chiaramente etichettati.





Circa 200 membri militari di unità di Fort Bragg supporterà l'esercitazione.
Questi membri militari agiscono con forze opposte ma realistiche nei combattenti  di guerriglia per la libertà, noto anche come movimento di resistenza di Pineland.
Queste truppe hanno un ruolo fondamentale nella formazione.

Per aggiungere più realismo all'esercizio, volontari civili vengono usati come con il ruolo di giocatori.

La partecipazione di questi volontari è fondamentale per il successo della formazione, i tirocinanti attestano il realismo aggiunto all'esercizio.

Robin Sage è la prima esercitazione di guerra non convenzionale delle forze armate degli Stati Uniti e la prova finale di oltre un anno di formazione per gli aspiranti soldati delle forze speciali.

I candidati sono collocati in un contesto di instabilità politica caratterizzata da conflitti armati, costringendo i soldati ad analizzare e risolvere i problemi per affrontare le sfide di questa formazione nel "mondo reale".
Nel corso di questo esercizio, questi futuri soldati delle forze speciali devono infiltrarsi nelle zone in piccoli gruppi e come  forze di guerriglia utilizzano in modo indipendente ed efficace la forza tattica per liberare Pineland insegnando loro come comunicare, muoversi, combattere e fornire assistenza medica.
Gli studenti della US Army che completano con successo questa interazione dell'esercitazione di Robin Sage si laureano per le Special Forces Qualification Course con cerimonia il 1 novembre a Fayetteville.

Inoltre, i soldati stranieri che partecipano a Robin Sage e il SFQC nel quadro di programmi di scambio si laurea al corso per tornare a sevire come militare nella loro nazione.






Note di SD:

Netflix, Inc. è un fornitore americano di on-demand di Internet streaming media a disposizione degli spettatori in tutto il Nord America, Australia, Nuova Zelanda, Sud America e in alcune parti d'Europa (Danimarca, Irlanda, Paesi Bassi, Norvegia, Svezia, Finlandia, Francia, Svizzera, Austria, Belgio, Lussemburgo, Regno Unito e Germania). wikipedia


Il colonnello Aaron Bank (23 novembre 1902 - 1 Aprile 2004) è stato un ufficiale della United States Army , e fondatore della US Army Special Forces , comunemente chiamati "Berretti Verdi". Egli è anche famoso per le sue imprese in qualità di OSS ufficiale durante la Seconda Guerra Mondiale , paracadutato in Francia per coordinare e attivare la resistenza francese e organizzare un operazione destinata alla cattura di Adolf Hitlerwikipedia




Riferimenti:

http://www.army.mil/article/88618/Robin_Sage_exercise_to_run_in_North_Carolina_counties_Oct__13_through_24/

JADE HELM: “MASTERING THE HUMAN DOMAIN”-1033 Program & Exec Order 13684
https://www.youtube.com/watch?v=9M15G…

AZ Governor’s Response To Resident’s Concerns With Jade Helm15
https://www.youtube.com/watch?v=9crAz…

Si prega di condividere questi video con tutti ... avete il mio permesso di ri-pubblicare e condividerli sui social media.

Ricerca di Links collegati:

Fake Nation Tests Tomorrow’s Special Forces
http://usatoday30.usatoday.com/news/m…
Robin Sage – Special Forces Training
http://www.specialforcestraining.info…
Jade Helm pdf
http://american3rdposition.com/wp-con…
Psyop Tactical Force Structure
http://en.wikipedia.org/wiki/File:PSY…
USSOCOM Psyops Workflow
http://en.wikipedia.org/wiki/File:PSY…
Manufactured Terrorism-Operation Gladio: NATO’s Secret Army
http://netteandme.blogspot.com/2014/1…
Patriots of Pineland
http://www.ourstate.com/patriots-pine…
Asymmetrical Warfare Training – Atlantica
http://sofrep.com/40934/jade-helm-15-…
FEMA Region Map of US
http://www.qsl.net/afa2ts/new_regions…
Map-Peoples Republic of Pineland
http://sofrep.com/wp-content/uploads/…
Map-Atlantica & Associated Republics
http://sofrep.com/wp-content/uploads/…
Map-US States
http://www.paulabrown.net/us-map-blan…
2011 Religiosity Map
http://static.citylab.com/img/upload/…
Map-North Carolina: Compare to SOCOM Map of Pineland
http://www.paulabrown.net/us-map-blan…
Map-FEMA Districts (blank states) within FEMA Regions
http://www.paulabrown.net/us-map-blan…

martedì 19 maggio 2015

Inquinamento da plastica: la Coalizione anti-bayer chiede la messa al bando della microplastica.

Inquinamento da plastica: la Coalizione anti-bayer chiede la messa al bando della microplastica.





Enormi quantità di rifiuti di plastica finiscono negli oceani con conseguenze disastrose per gli animali, gli uomini e l'ambiente. Essendo uno dei maggiori produttori di plastica, la BAYER ha una parte di responsabilità in questo crimine ambientale. La Coalizione contro i pericoli derivanti dalla Bayer (CBG Germania) chiede la messa al bando delle microplastiche e introduce unacontromozione  alla prossima assemblea degli azionisti BAYER.


Ogni anno 20 milioni di tonnellate di plastica finiscono negli oceani, dove già galleggiano oltre 5 mila miliardi di frammenti di plastica. Nel solo oceano Pacifico c'è una chiazza di rifiuti che copre 3,4 milioni di chilometri quadrati. In certi posti, nell'acqua c'è più plastica che plankton. Poichè la maggior parte della plastica non è biodegradabile, essa rimane un pericolo ambientale per secoli.


Ciò ha conseguenze fatali per la flora e la fauna. Il vento e le onde riducono la plastica in minuscoli frammenti che sono poi ingeriti da microrganismi, pesci e mammiferi marini. Foche, uccelli marini e delfini muoiono di una morte terribile e, assieme al pesce, la plastica finisce nel nostro cibo.


La BAYER ha la sua grossa fetta di responsabilità in questo disastro. La Compagnia è uno dei maggiori produttori mondiali di plastica. Nel solo settore dei TDI la sua fetta di mercato è del 25%. La BAYER è il maggior produttore europeo di policarbonati. Un prodotto particolarmente irresponsabile della BAYER è la microplastica, venduta col nome commerciale di BAYCUSAN, che viene usata nella produzione di cosmetici, detersivi e gel per doccia. In passato, al suo posto, si usavano semi tritati che sono completamente biodegradabili.


La Coalizione contro i pericoli derivanti dalla Bayer (CBG Germania) chiede la messa al bando delle microplastiche e introduce una contromozione alla prossima assemblea degli azionisti BAYER. Philipp Mimkes, portavoce della Coalizione, afferma: "Il Consiglio Direttivo della BAYER non ha preso alcuna misura per arrestare l'inquinamento degli oceani dovuto ai rifiuti di plastica. Al contrario, il costante aumento della produzione ha ulteriormente aggravato il problema. Per questo le azioni del Consiglio Direttivo non devono essere ratificate". Mimkes chiede che la plastica sia sostituita per quanto possibile da materiali biodegradabili e che i produttori di plastica siano obbligati a rivelare tutti i componenti e tutti i dati tossicologici.


La BAYER fornisce il BAYCUSAN per prodotti per i capelli, creme abbronzanti, creme per la pelle e mascara. Per esempio, il Poliuretano-32 è usato per rendere più facile la rimozione delle maschere di pulizia. Secondo la BAYER il Poliuretano-34 assicura "riccioli duraturi" e "alta lucentezza", mentre il Poliuretano-35 rende i cosmetici "naturali al tatto". Tuttavia gli impianti di depurazione non riescono ad impedire che le particelle finiscano nei fiumi e poi nel mare. Le microplastiche sono gia state trovate nella birra, nel latte, nell'acqua minerale e nel miele. In Germania l' "Alfred Wegener Institute", ha analizzato l'acqua in uscita da 12 depuratori e ha trovato fino a 700 frammenti di plastica per metro cubo d'acqua.

In mare, gli effetti tossici della microplastica aumentano ulteriormente. Con la loro superfice resistente all'acqua e solubile nel grasso, le particelle catturano sostanze tossiche come i PCB (bifenili policlorinati), pesticidi, residui di farmaci, mercurio, piombo, e cromo. Per questo gli eco-tossicologi ritengono le microplastiche un pericolo per l'essere umano.


ulteriori informazioni:
BAYER: Critiche alla fabbrica di poliuretano
Produzione di poliuretani della BAYER: Critiche di gruppi ambientalisti

Countermotions on Bayer website: www.bayer.com/en/stockholder-counter-motions-2015.aspx

► Potrebbe interessare anche: